* RGB Matrix overhaul Breakout of animations to separate files Integration of optimized int based math lib Overhaul of rgb_matrix.c and animations for performance * Updating effect function api for future extensions * Combined the keypresses || keyreleases define checks into a single define so I stop forgetting it where necessary * Moving define RGB_MATRIX_KEYREACTIVE_ENABLED earlier in the include chain
		
			
				
	
	
		
			553 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			553 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef __INC_LIB8TION_MATH_H
 | |
| #define __INC_LIB8TION_MATH_H
 | |
| 
 | |
| #include "scale8.h"
 | |
| 
 | |
| ///@ingroup lib8tion
 | |
| 
 | |
| ///@defgroup Math Basic math operations
 | |
| /// Fast, efficient 8-bit math functions specifically
 | |
| /// designed for high-performance LED programming.
 | |
| ///
 | |
| /// Because of the AVR(Arduino) and ARM assembly language
 | |
| /// implementations provided, using these functions often
 | |
| /// results in smaller and faster code than the equivalent
 | |
| /// program using plain "C" arithmetic and logic.
 | |
| ///@{
 | |
| 
 | |
| 
 | |
| /// add one byte to another, saturating at 0xFF
 | |
| /// @param i - first byte to add
 | |
| /// @param j - second byte to add
 | |
| /// @returns the sum of i & j, capped at 0xFF
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t qadd8( uint8_t i, uint8_t j)
 | |
| {
 | |
| #if QADD8_C == 1
 | |
|     uint16_t t = i + j;
 | |
|     if (t > 255) t = 255;
 | |
|     return t;
 | |
| #elif QADD8_AVRASM == 1
 | |
|     asm volatile(
 | |
|          /* First, add j to i, conditioning the C flag */
 | |
|          "add %0, %1    \n\t"
 | |
| 
 | |
|          /* Now test the C flag.
 | |
|            If C is clear, we branch around a load of 0xFF into i.
 | |
|            If C is set, we go ahead and load 0xFF into i.
 | |
|          */
 | |
|          "brcc L_%=     \n\t"
 | |
|          "ldi %0, 0xFF  \n\t"
 | |
|          "L_%=: "
 | |
|          : "+a" (i)
 | |
|          : "a"  (j) );
 | |
|     return i;
 | |
| #elif QADD8_ARM_DSP_ASM == 1
 | |
|     asm volatile( "uqadd8 %0, %0, %1" : "+r" (i) : "r" (j));
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for qadd8 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Add one byte to another, saturating at 0x7F
 | |
| /// @param i - first byte to add
 | |
| /// @param j - second byte to add
 | |
| /// @returns the sum of i & j, capped at 0xFF
 | |
| LIB8STATIC_ALWAYS_INLINE int8_t qadd7( int8_t i, int8_t j)
 | |
| {
 | |
| #if QADD7_C == 1
 | |
|     int16_t t = i + j;
 | |
|     if (t > 127) t = 127;
 | |
|     return t;
 | |
| #elif QADD7_AVRASM == 1
 | |
|     asm volatile(
 | |
|          /* First, add j to i, conditioning the V flag */
 | |
|          "add %0, %1    \n\t"
 | |
| 
 | |
|          /* Now test the V flag.
 | |
|           If V is clear, we branch around a load of 0x7F into i.
 | |
|           If V is set, we go ahead and load 0x7F into i.
 | |
|           */
 | |
|          "brvc L_%=     \n\t"
 | |
|          "ldi %0, 0x7F  \n\t"
 | |
|          "L_%=: "
 | |
|          : "+a" (i)
 | |
|          : "a"  (j) );
 | |
| 
 | |
|     return i;
 | |
| #elif QADD7_ARM_DSP_ASM == 1
 | |
|     asm volatile( "qadd8 %0, %0, %1" : "+r" (i) : "r" (j));
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for qadd7 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// subtract one byte from another, saturating at 0x00
 | |
| /// @returns i - j with a floor of 0
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t qsub8( uint8_t i, uint8_t j)
 | |
| {
 | |
| #if QSUB8_C == 1
 | |
|     int16_t t = i - j;
 | |
|     if (t < 0) t = 0;
 | |
|     return t;
 | |
| #elif QSUB8_AVRASM == 1
 | |
| 
 | |
|     asm volatile(
 | |
|          /* First, subtract j from i, conditioning the C flag */
 | |
|          "sub %0, %1    \n\t"
 | |
| 
 | |
|          /* Now test the C flag.
 | |
|           If C is clear, we branch around a load of 0x00 into i.
 | |
|           If C is set, we go ahead and load 0x00 into i.
 | |
|           */
 | |
|          "brcc L_%=     \n\t"
 | |
|          "ldi %0, 0x00  \n\t"
 | |
|          "L_%=: "
 | |
|          : "+a" (i)
 | |
|          : "a"  (j) );
 | |
| 
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for qsub8 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// add one byte to another, with one byte result
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t add8( uint8_t i, uint8_t j)
 | |
| {
 | |
| #if ADD8_C == 1
 | |
|     uint16_t t = i + j;
 | |
|     return t;
 | |
| #elif ADD8_AVRASM == 1
 | |
|     // Add j to i, period.
 | |
|     asm volatile( "add %0, %1" : "+a" (i) : "a" (j));
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for add8 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// add one byte to another, with one byte result
 | |
| LIB8STATIC_ALWAYS_INLINE uint16_t add8to16( uint8_t i, uint16_t j)
 | |
| {
 | |
| #if ADD8_C == 1
 | |
|     uint16_t t = i + j;
 | |
|     return t;
 | |
| #elif ADD8_AVRASM == 1
 | |
|     // Add i(one byte) to j(two bytes)
 | |
|     asm volatile( "add %A[j], %[i]              \n\t"
 | |
|                   "adc %B[j], __zero_reg__      \n\t"
 | |
|                  : [j] "+a" (j)
 | |
|                  : [i] "a"  (i)
 | |
|                  );
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for add8to16 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /// subtract one byte from another, 8-bit result
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t sub8( uint8_t i, uint8_t j)
 | |
| {
 | |
| #if SUB8_C == 1
 | |
|     int16_t t = i - j;
 | |
|     return t;
 | |
| #elif SUB8_AVRASM == 1
 | |
|     // Subtract j from i, period.
 | |
|     asm volatile( "sub %0, %1" : "+a" (i) : "a" (j));
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for sub8 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Calculate an integer average of two unsigned
 | |
| ///       8-bit integer values (uint8_t).
 | |
| ///       Fractional results are rounded down, e.g. avg8(20,41) = 30
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t avg8( uint8_t i, uint8_t j)
 | |
| {
 | |
| #if AVG8_C == 1
 | |
|     return (i + j) >> 1;
 | |
| #elif AVG8_AVRASM == 1
 | |
|     asm volatile(
 | |
|          /* First, add j to i, 9th bit overflows into C flag */
 | |
|          "add %0, %1    \n\t"
 | |
|          /* Divide by two, moving C flag into high 8th bit */
 | |
|          "ror %0        \n\t"
 | |
|          : "+a" (i)
 | |
|          : "a"  (j) );
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for avg8 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Calculate an integer average of two unsigned
 | |
| ///       16-bit integer values (uint16_t).
 | |
| ///       Fractional results are rounded down, e.g. avg16(20,41) = 30
 | |
| LIB8STATIC_ALWAYS_INLINE uint16_t avg16( uint16_t i, uint16_t j)
 | |
| {
 | |
| #if AVG16_C == 1
 | |
|     return (uint32_t)((uint32_t)(i) + (uint32_t)(j)) >> 1;
 | |
| #elif AVG16_AVRASM == 1
 | |
|     asm volatile(
 | |
|                  /* First, add jLo (heh) to iLo, 9th bit overflows into C flag */
 | |
|                  "add %A[i], %A[j]    \n\t"
 | |
|                  /* Now, add C + jHi to iHi, 17th bit overflows into C flag */
 | |
|                  "adc %B[i], %B[j]    \n\t"
 | |
|                  /* Divide iHi by two, moving C flag into high 16th bit, old 9th bit now in C */
 | |
|                  "ror %B[i]        \n\t"
 | |
|                  /* Divide iLo by two, moving C flag into high 8th bit */
 | |
|                  "ror %A[i]        \n\t"
 | |
|                  : [i] "+a" (i)
 | |
|                  : [j] "a"  (j) );
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for avg16 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Calculate an integer average of two signed 7-bit
 | |
| ///       integers (int8_t)
 | |
| ///       If the first argument is even, result is rounded down.
 | |
| ///       If the first argument is odd, result is result up.
 | |
| LIB8STATIC_ALWAYS_INLINE int8_t avg7( int8_t i, int8_t j)
 | |
| {
 | |
| #if AVG7_C == 1
 | |
|     return ((i + j) >> 1) + (i & 0x1);
 | |
| #elif AVG7_AVRASM == 1
 | |
|     asm volatile(
 | |
|                  "asr %1        \n\t"
 | |
|                  "asr %0        \n\t"
 | |
|                  "adc %0, %1    \n\t"
 | |
|                  : "+a" (i)
 | |
|                  : "a"  (j) );
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for avg7 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Calculate an integer average of two signed 15-bit
 | |
| ///       integers (int16_t)
 | |
| ///       If the first argument is even, result is rounded down.
 | |
| ///       If the first argument is odd, result is result up.
 | |
| LIB8STATIC_ALWAYS_INLINE int16_t avg15( int16_t i, int16_t j)
 | |
| {
 | |
| #if AVG15_C == 1
 | |
|     return ((int32_t)((int32_t)(i) + (int32_t)(j)) >> 1) + (i & 0x1);
 | |
| #elif AVG15_AVRASM == 1
 | |
|     asm volatile(
 | |
|                  /* first divide j by 2, throwing away lowest bit */
 | |
|                  "asr %B[j]          \n\t"
 | |
|                  "ror %A[j]          \n\t"
 | |
|                  /* now divide i by 2, with lowest bit going into C */
 | |
|                  "asr %B[i]          \n\t"
 | |
|                  "ror %A[i]          \n\t"
 | |
|                  /* add j + C to i */
 | |
|                  "adc %A[i], %A[j]   \n\t"
 | |
|                  "adc %B[i], %B[j]   \n\t"
 | |
|                  : [i] "+a" (i)
 | |
|                  : [j] "a"  (j) );
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for avg15 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| ///       Calculate the remainder of one unsigned 8-bit
 | |
| ///       value divided by anoter, aka A % M.
 | |
| ///       Implemented by repeated subtraction, which is
 | |
| ///       very compact, and very fast if A is 'probably'
 | |
| ///       less than M.  If A is a large multiple of M,
 | |
| ///       the loop has to execute multiple times.  However,
 | |
| ///       even in that case, the loop is only two
 | |
| ///       instructions long on AVR, i.e., quick.
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t mod8( uint8_t a, uint8_t m)
 | |
| {
 | |
| #if defined(__AVR__)
 | |
|     asm volatile (
 | |
|                   "L_%=:  sub %[a],%[m]    \n\t"
 | |
|                   "       brcc L_%=        \n\t"
 | |
|                   "       add %[a],%[m]    \n\t"
 | |
|                   : [a] "+r" (a)
 | |
|                   : [m] "r"  (m)
 | |
|                   );
 | |
| #else
 | |
|     while( a >= m) a -= m;
 | |
| #endif
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| ///          Add two numbers, and calculate the modulo
 | |
| ///          of the sum and a third number, M.
 | |
| ///          In other words, it returns (A+B) % M.
 | |
| ///          It is designed as a compact mechanism for
 | |
| ///          incrementing a 'mode' switch and wrapping
 | |
| ///          around back to 'mode 0' when the switch
 | |
| ///          goes past the end of the available range.
 | |
| ///          e.g. if you have seven modes, this switches
 | |
| ///          to the next one and wraps around if needed:
 | |
| ///            mode = addmod8( mode, 1, 7);
 | |
| ///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance.
 | |
| LIB8STATIC uint8_t addmod8( uint8_t a, uint8_t b, uint8_t m)
 | |
| {
 | |
| #if defined(__AVR__)
 | |
|     asm volatile (
 | |
|                   "       add %[a],%[b]    \n\t"
 | |
|                   "L_%=:  sub %[a],%[m]    \n\t"
 | |
|                   "       brcc L_%=        \n\t"
 | |
|                   "       add %[a],%[m]    \n\t"
 | |
|                   : [a] "+r" (a)
 | |
|                   : [b] "r"  (b), [m] "r" (m)
 | |
|                   );
 | |
| #else
 | |
|     a += b;
 | |
|     while( a >= m) a -= m;
 | |
| #endif
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| ///          Subtract two numbers, and calculate the modulo
 | |
| ///          of the difference and a third number, M.
 | |
| ///          In other words, it returns (A-B) % M.
 | |
| ///          It is designed as a compact mechanism for
 | |
| ///          incrementing a 'mode' switch and wrapping
 | |
| ///          around back to 'mode 0' when the switch
 | |
| ///          goes past the end of the available range.
 | |
| ///          e.g. if you have seven modes, this switches
 | |
| ///          to the next one and wraps around if needed:
 | |
| ///            mode = addmod8( mode, 1, 7);
 | |
| ///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance.
 | |
| LIB8STATIC uint8_t submod8( uint8_t a, uint8_t b, uint8_t m)
 | |
| {
 | |
| #if defined(__AVR__)
 | |
|     asm volatile (
 | |
|                   "       sub %[a],%[b]    \n\t"
 | |
|                   "L_%=:  sub %[a],%[m]    \n\t"
 | |
|                   "       brcc L_%=        \n\t"
 | |
|                   "       add %[a],%[m]    \n\t"
 | |
|                   : [a] "+r" (a)
 | |
|                   : [b] "r"  (b), [m] "r" (m)
 | |
|                   );
 | |
| #else
 | |
|     a -= b;
 | |
|     while( a >= m) a -= m;
 | |
| #endif
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /// 8x8 bit multiplication, with 8 bit result
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t mul8( uint8_t i, uint8_t j)
 | |
| {
 | |
| #if MUL8_C == 1
 | |
|     return ((uint16_t)i * (uint16_t)(j) ) & 0xFF;
 | |
| #elif MUL8_AVRASM == 1
 | |
|     asm volatile(
 | |
|          /* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */
 | |
|          "mul %0, %1          \n\t"
 | |
|          /* Extract the LOW 8-bits (r0) */
 | |
|          "mov %0, r0          \n\t"
 | |
|          /* Restore r1 to "0"; it's expected to always be that */
 | |
|          "clr __zero_reg__    \n\t"
 | |
|          : "+a" (i)
 | |
|          : "a"  (j)
 | |
|          : "r0", "r1");
 | |
| 
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for mul8 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /// saturating 8x8 bit multiplication, with 8 bit result
 | |
| /// @returns the product of i * j, capping at 0xFF
 | |
| LIB8STATIC_ALWAYS_INLINE uint8_t qmul8( uint8_t i, uint8_t j)
 | |
| {
 | |
| #if QMUL8_C == 1
 | |
|     int p = ((uint16_t)i * (uint16_t)(j) );
 | |
|     if( p > 255) p = 255;
 | |
|     return p;
 | |
| #elif QMUL8_AVRASM == 1
 | |
|     asm volatile(
 | |
|                  /* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */
 | |
|                  "  mul %0, %1          \n\t"
 | |
|                  /* If high byte of result is zero, all is well. */
 | |
|                  "  tst r1              \n\t"
 | |
|                  "  breq Lnospill_%=    \n\t"
 | |
|                  /* If high byte of result > 0, saturate low byte to 0xFF */
 | |
|                  "  ldi %0,0xFF         \n\t"
 | |
|                  "  rjmp Ldone_%=       \n\t"
 | |
|                  "Lnospill_%=:          \n\t"
 | |
|                  /* Extract the LOW 8-bits (r0) */
 | |
|                  "  mov %0, r0          \n\t"
 | |
|                  "Ldone_%=:             \n\t"
 | |
|                  /* Restore r1 to "0"; it's expected to always be that */
 | |
|                  "  clr __zero_reg__    \n\t"
 | |
|                  : "+a" (i)
 | |
|                  : "a"  (j)
 | |
|                  : "r0", "r1");
 | |
| 
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for qmul8 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /// take abs() of a signed 8-bit uint8_t
 | |
| LIB8STATIC_ALWAYS_INLINE int8_t abs8( int8_t i)
 | |
| {
 | |
| #if ABS8_C == 1
 | |
|     if( i < 0) i = -i;
 | |
|     return i;
 | |
| #elif ABS8_AVRASM == 1
 | |
| 
 | |
| 
 | |
|     asm volatile(
 | |
|          /* First, check the high bit, and prepare to skip if it's clear */
 | |
|          "sbrc %0, 7 \n"
 | |
| 
 | |
|          /* Negate the value */
 | |
|          "neg %0     \n"
 | |
| 
 | |
|          : "+r" (i) : "r" (i) );
 | |
|     return i;
 | |
| #else
 | |
| #error "No implementation for abs8 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| ///         square root for 16-bit integers
 | |
| ///         About three times faster and five times smaller
 | |
| ///         than Arduino's general sqrt on AVR.
 | |
| LIB8STATIC uint8_t sqrt16(uint16_t x)
 | |
| {
 | |
|     if( x <= 1) {
 | |
|         return x;
 | |
|     }
 | |
| 
 | |
|     uint8_t low = 1; // lower bound
 | |
|     uint8_t hi, mid;
 | |
| 
 | |
|     if( x > 7904) {
 | |
|         hi = 255;
 | |
|     } else {
 | |
|         hi = (x >> 5) + 8; // initial estimate for upper bound
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         mid = (low + hi) >> 1;
 | |
|         if ((uint16_t)(mid * mid) > x) {
 | |
|             hi = mid - 1;
 | |
|         } else {
 | |
|             if( mid == 255) {
 | |
|                 return 255;
 | |
|             }
 | |
|             low = mid + 1;
 | |
|         }
 | |
|     } while (hi >= low);
 | |
| 
 | |
|     return low - 1;
 | |
| }
 | |
| 
 | |
| /// blend a variable proproportion(0-255) of one byte to another
 | |
| /// @param a - the starting byte value
 | |
| /// @param b - the byte value to blend toward
 | |
| /// @param amountOfB - the proportion (0-255) of b to blend
 | |
| /// @returns a byte value between a and b, inclusive
 | |
| #if (FASTLED_BLEND_FIXED == 1)
 | |
| LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB)
 | |
| {
 | |
| #if BLEND8_C == 1
 | |
|     uint16_t partial;
 | |
|     uint8_t result;
 | |
| 
 | |
|     uint8_t amountOfA = 255 - amountOfB;
 | |
| 
 | |
|     partial = (a * amountOfA);
 | |
| #if (FASTLED_SCALE8_FIXED == 1)
 | |
|     partial += a;
 | |
|     //partial = add8to16( a, partial);
 | |
| #endif
 | |
| 
 | |
|     partial += (b * amountOfB);
 | |
| #if (FASTLED_SCALE8_FIXED == 1)
 | |
|     partial += b;
 | |
|     //partial = add8to16( b, partial);
 | |
| #endif
 | |
| 
 | |
|     result = partial >> 8;
 | |
| 
 | |
|     return result;
 | |
| 
 | |
| #elif BLEND8_AVRASM == 1
 | |
|     uint16_t partial;
 | |
|     uint8_t result;
 | |
| 
 | |
|     asm volatile (
 | |
|         /* partial = b * amountOfB */
 | |
|         "  mul %[b], %[amountOfB]        \n\t"
 | |
|         "  movw %A[partial], r0          \n\t"
 | |
| 
 | |
|         /* amountOfB (aka amountOfA) = 255 - amountOfB */
 | |
|         "  com %[amountOfB]              \n\t"
 | |
| 
 | |
|         /* partial += a * amountOfB (aka amountOfA) */
 | |
|         "  mul %[a], %[amountOfB]        \n\t"
 | |
| 
 | |
|         "  add %A[partial], r0           \n\t"
 | |
|         "  adc %B[partial], r1           \n\t"
 | |
| 
 | |
|         "  clr __zero_reg__              \n\t"
 | |
| 
 | |
| #if (FASTLED_SCALE8_FIXED == 1)
 | |
|         /* partial += a */
 | |
|         "  add %A[partial], %[a]         \n\t"
 | |
|         "  adc %B[partial], __zero_reg__ \n\t"
 | |
| 
 | |
|         // partial += b
 | |
|         "  add %A[partial], %[b]         \n\t"
 | |
|         "  adc %B[partial], __zero_reg__ \n\t"
 | |
| #endif
 | |
| 
 | |
|         : [partial] "=r" (partial),
 | |
|           [amountOfB] "+a" (amountOfB)
 | |
|         : [a] "a" (a),
 | |
|           [b] "a" (b)
 | |
|         : "r0", "r1"
 | |
|     );
 | |
| 
 | |
|     result = partial >> 8;
 | |
| 
 | |
|     return result;
 | |
| 
 | |
| #else
 | |
| #error "No implementation for blend8 available."
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else
 | |
| LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB)
 | |
| {
 | |
|     // This version loses precision in the integer math
 | |
|     // and can actually return results outside of the range
 | |
|     // from a to b.  Its use is not recommended.
 | |
|     uint8_t result;
 | |
|     uint8_t amountOfA = 255 - amountOfB;
 | |
|     result = scale8_LEAVING_R1_DIRTY( a, amountOfA)
 | |
|            + scale8_LEAVING_R1_DIRTY( b, amountOfB);
 | |
|     cleanup_R1();
 | |
|     return result;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| ///@}
 | |
| #endif
 |