qmk-firmware/platforms/chibios/drivers/ws2812_spi.c
Jeff Epler 9632360caa
Use a macro to compute the size of arrays at compile time (#18044)
* Add ARRAY_SIZE and CEILING utility macros

* Apply a coccinelle patch to use ARRAY_SIZE

* fix up some straggling items

* Fix 'make test:secure'

* Enhance ARRAY_SIZE macro to reject acting on pointers

The previous definition would not produce a diagnostic for
```
int *p;
size_t num_elem = ARRAY_SIZE(p)
```
but the new one will.

* explicitly get definition of ARRAY_SIZE

* Convert to ARRAY_SIZE when const is involved

The following spatch finds additional instances where the array is
const and the division is by the size of the type, not the size of
the first element:
```
@ rule5a using "empty.iso" @
type T;
const T[] E;
@@

- (sizeof(E)/sizeof(T))
+ ARRAY_SIZE(E)

@ rule6a using "empty.iso" @
type T;
const T[] E;
@@

- sizeof(E)/sizeof(T)
+ ARRAY_SIZE(E)
```

* New instances of ARRAY_SIZE added since initial spatch run

* Use `ARRAY_SIZE` in docs (found by grep)

* Manually use ARRAY_SIZE

hs_set is expected to be the same size as uint16_t, though it's made
of two 8-bit integers

* Just like char, sizeof(uint8_t) is guaranteed to be 1

This is at least true on any plausible system where qmk is actually used.

Per my understanding it's universally true, assuming that uint8_t exists:
https://stackoverflow.com/questions/48655310/can-i-assume-that-sizeofuint8-t-1

* Run qmk-format on core C files touched in this branch

Co-authored-by: Stefan Kerkmann <karlk90@pm.me>
2022-08-30 10:20:04 +02:00

209 lines
6.6 KiB
C

#include "quantum.h"
#include "ws2812.h"
/* Adapted from https://github.com/gamazeps/ws2812b-chibios-SPIDMA/ */
// Define the spi your LEDs are plugged to here
#ifndef WS2812_SPI
# define WS2812_SPI SPID1
#endif
#ifndef WS2812_SPI_MOSI_PAL_MODE
# define WS2812_SPI_MOSI_PAL_MODE 5
#endif
#ifndef WS2812_SPI_SCK_PAL_MODE
# define WS2812_SPI_SCK_PAL_MODE 5
#endif
#ifndef WS2812_SPI_DIVISOR
# define WS2812_SPI_DIVISOR 16
#endif
// Push Pull or Open Drain Configuration
// Default Push Pull
#ifndef WS2812_EXTERNAL_PULLUP
# if defined(USE_GPIOV1)
# define WS2812_MOSI_OUTPUT_MODE PAL_MODE_ALTERNATE_PUSHPULL
# else
# define WS2812_MOSI_OUTPUT_MODE PAL_MODE_ALTERNATE(WS2812_SPI_MOSI_PAL_MODE) | PAL_OUTPUT_TYPE_PUSHPULL
# endif
#else
# if defined(USE_GPIOV1)
# define WS2812_MOSI_OUTPUT_MODE PAL_MODE_ALTERNATE_OPENDRAIN
# else
# define WS2812_MOSI_OUTPUT_MODE PAL_MODE_ALTERNATE(WS2812_SPI_MOSI_PAL_MODE) | PAL_OUTPUT_TYPE_OPENDRAIN
# endif
#endif
// Define SPI config speed
// baudrate should target 3.2MHz
// F072 fpclk = 48MHz
// 48/16 = 3Mhz
#if WS2812_SPI_DIVISOR == 2
# define WS2812_SPI_DIVISOR_CR1_BR_X (0)
#elif WS2812_SPI_DIVISOR == 4
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_0)
#elif WS2812_SPI_DIVISOR == 8
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_1)
#elif WS2812_SPI_DIVISOR == 16 // default
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_1 | SPI_CR1_BR_0)
#elif WS2812_SPI_DIVISOR == 32
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_2)
#elif WS2812_SPI_DIVISOR == 64
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_2 | SPI_CR1_BR_0)
#elif WS2812_SPI_DIVISOR == 128
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_2 | SPI_CR1_BR_1)
#elif WS2812_SPI_DIVISOR == 256
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0)
#else
# error "Configured WS2812_SPI_DIVISOR value is not supported at this time."
#endif
// Use SPI circular buffer
#ifdef WS2812_SPI_USE_CIRCULAR_BUFFER
# define WS2812_SPI_BUFFER_MODE 1 // circular buffer
#else
# define WS2812_SPI_BUFFER_MODE 0 // normal buffer
#endif
#if defined(USE_GPIOV1)
# define WS2812_SCK_OUTPUT_MODE PAL_MODE_ALTERNATE_PUSHPULL
#else
# define WS2812_SCK_OUTPUT_MODE PAL_MODE_ALTERNATE(WS2812_SPI_SCK_PAL_MODE) | PAL_OUTPUT_TYPE_PUSHPULL
#endif
#define BYTES_FOR_LED_BYTE 4
#ifdef RGBW
# define WS2812_CHANNELS 4
#else
# define WS2812_CHANNELS 3
#endif
#define BYTES_FOR_LED (BYTES_FOR_LED_BYTE * WS2812_CHANNELS)
#define DATA_SIZE (BYTES_FOR_LED * RGBLED_NUM)
#define RESET_SIZE (1000 * WS2812_TRST_US / (2 * WS2812_TIMING))
#define PREAMBLE_SIZE 4
static uint8_t txbuf[PREAMBLE_SIZE + DATA_SIZE + RESET_SIZE] = {0};
/*
* As the trick here is to use the SPI to send a huge pattern of 0 and 1 to
* the ws2812b protocol, we use this helper function to translate bytes into
* 0s and 1s for the LED (with the appropriate timing).
*/
static uint8_t get_protocol_eq(uint8_t data, int pos) {
uint8_t eq = 0;
if (data & (1 << (2 * (3 - pos))))
eq = 0b1110;
else
eq = 0b1000;
if (data & (2 << (2 * (3 - pos))))
eq += 0b11100000;
else
eq += 0b10000000;
return eq;
}
static void set_led_color_rgb(LED_TYPE color, int pos) {
uint8_t* tx_start = &txbuf[PREAMBLE_SIZE];
#if (WS2812_BYTE_ORDER == WS2812_BYTE_ORDER_GRB)
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.r, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.b, j);
#elif (WS2812_BYTE_ORDER == WS2812_BYTE_ORDER_RGB)
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.r, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.b, j);
#elif (WS2812_BYTE_ORDER == WS2812_BYTE_ORDER_BGR)
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.b, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.r, j);
#endif
#ifdef RGBW
for (int j = 0; j < 4; j++)
tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 4 + j] = get_protocol_eq(color.w, j);
#endif
}
void ws2812_init(void) {
palSetLineMode(RGB_DI_PIN, WS2812_MOSI_OUTPUT_MODE);
#ifdef WS2812_SPI_SCK_PIN
palSetLineMode(WS2812_SPI_SCK_PIN, WS2812_SCK_OUTPUT_MODE);
#endif // WS2812_SPI_SCK_PIN
// TODO: more dynamic baudrate
static const SPIConfig spicfg = {
#ifndef HAL_LLD_SELECT_SPI_V2
// HAL_SPI_V1
# if SPI_SUPPORTS_CIRCULAR == TRUE
WS2812_SPI_BUFFER_MODE,
# endif
NULL, // end_cb
PAL_PORT(RGB_DI_PIN),
PAL_PAD(RGB_DI_PIN),
# if defined(WB32F3G71xx) || defined(WB32FQ95xx)
0,
0,
WS2812_SPI_DIVISOR
# else
WS2812_SPI_DIVISOR_CR1_BR_X,
0
# endif
#else
// HAL_SPI_V2
# if SPI_SUPPORTS_CIRCULAR == TRUE
WS2812_SPI_BUFFER_MODE,
# endif
# if SPI_SUPPORTS_SLAVE_MODE == TRUE
false,
# endif
NULL, // data_cb
NULL, // error_cb
PAL_PORT(RGB_DI_PIN),
PAL_PAD(RGB_DI_PIN),
WS2812_SPI_DIVISOR_CR1_BR_X,
0
#endif
};
spiAcquireBus(&WS2812_SPI); /* Acquire ownership of the bus. */
spiStart(&WS2812_SPI, &spicfg); /* Setup transfer parameters. */
spiSelect(&WS2812_SPI); /* Slave Select assertion. */
#ifdef WS2812_SPI_USE_CIRCULAR_BUFFER
spiStartSend(&WS2812_SPI, ARRAY_SIZE(txbuf), txbuf);
#endif
}
void ws2812_setleds(LED_TYPE* ledarray, uint16_t leds) {
static bool s_init = false;
if (!s_init) {
ws2812_init();
s_init = true;
}
for (uint8_t i = 0; i < leds; i++) {
set_led_color_rgb(ledarray[i], i);
}
// Send async - each led takes ~0.03ms, 50 leds ~1.5ms, animations flushing faster than send will cause issues.
// Instead spiSend can be used to send synchronously (or the thread logic can be added back).
#ifndef WS2812_SPI_USE_CIRCULAR_BUFFER
# ifdef WS2812_SPI_SYNC
spiSend(&WS2812_SPI, ARRAY_SIZE(txbuf), txbuf);
# else
spiStartSend(&WS2812_SPI, ARRAY_SIZE(txbuf), txbuf);
# endif
#endif
}