qmk-firmware/quantum/quantum.c

1050 lines
25 KiB
C

#include "quantum.h"
#ifdef PROTOCOL_LUFA
#include "outputselect.h"
#endif
#ifndef TAPPING_TERM
#define TAPPING_TERM 200
#endif
#ifdef FAUXCLICKY_ENABLE
#include "fauxclicky.h"
#endif
static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
switch (code) {
case QK_MODS ... QK_MODS_MAX:
break;
default:
return;
}
if (code & QK_LCTL)
f(KC_LCTL);
if (code & QK_LSFT)
f(KC_LSFT);
if (code & QK_LALT)
f(KC_LALT);
if (code & QK_LGUI)
f(KC_LGUI);
if (code < QK_RMODS_MIN) return;
if (code & QK_RCTL)
f(KC_RCTL);
if (code & QK_RSFT)
f(KC_RSFT);
if (code & QK_RALT)
f(KC_RALT);
if (code & QK_RGUI)
f(KC_RGUI);
}
static inline void qk_register_weak_mods(uint8_t kc) {
add_weak_mods(MOD_BIT(kc));
send_keyboard_report();
}
static inline void qk_unregister_weak_mods(uint8_t kc) {
del_weak_mods(MOD_BIT(kc));
send_keyboard_report();
}
static inline void qk_register_mods(uint8_t kc) {
add_weak_mods(MOD_BIT(kc));
send_keyboard_report();
}
static inline void qk_unregister_mods(uint8_t kc) {
del_weak_mods(MOD_BIT(kc));
send_keyboard_report();
}
void register_code16 (uint16_t code) {
if (IS_MOD(code) || code == KC_NO) {
do_code16 (code, qk_register_mods);
} else {
do_code16 (code, qk_register_weak_mods);
}
register_code (code);
}
void unregister_code16 (uint16_t code) {
unregister_code (code);
if (IS_MOD(code) || code == KC_NO) {
do_code16 (code, qk_unregister_mods);
} else {
do_code16 (code, qk_unregister_weak_mods);
}
}
__attribute__ ((weak))
bool process_action_kb(keyrecord_t *record) {
return true;
}
__attribute__ ((weak))
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
return process_record_user(keycode, record);
}
__attribute__ ((weak))
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
return true;
}
void reset_keyboard(void) {
clear_keyboard();
#ifdef AUDIO_ENABLE
stop_all_notes();
shutdown_user();
#endif
wait_ms(250);
#ifdef CATERINA_BOOTLOADER
*(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
#endif
bootloader_jump();
}
// Shift / paren setup
#ifndef LSPO_KEY
#define LSPO_KEY KC_9
#endif
#ifndef RSPC_KEY
#define RSPC_KEY KC_0
#endif
static bool shift_interrupted[2] = {0, 0};
static uint16_t scs_timer = 0;
bool process_record_quantum(keyrecord_t *record) {
/* This gets the keycode from the key pressed */
keypos_t key = record->event.key;
uint16_t keycode;
#if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
/* TODO: Use store_or_get_action() or a similar function. */
if (!disable_action_cache) {
uint8_t layer;
if (record->event.pressed) {
layer = layer_switch_get_layer(key);
update_source_layers_cache(key, layer);
} else {
layer = read_source_layers_cache(key);
}
keycode = keymap_key_to_keycode(layer, key);
} else
#endif
keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
// This is how you use actions here
// if (keycode == KC_LEAD) {
// action_t action;
// action.code = ACTION_DEFAULT_LAYER_SET(0);
// process_action(record, action);
// return false;
// }
if (!(
process_record_kb(keycode, record) &&
#if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
process_midi(keycode, record) &&
#endif
#ifdef AUDIO_ENABLE
process_audio(keycode, record) &&
#endif
#if defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))
process_music(keycode, record) &&
#endif
#ifdef TAP_DANCE_ENABLE
process_tap_dance(keycode, record) &&
#endif
#ifndef DISABLE_LEADER
process_leader(keycode, record) &&
#endif
#ifndef DISABLE_CHORDING
process_chording(keycode, record) &&
#endif
#ifdef COMBO_ENABLE
process_combo(keycode, record) &&
#endif
#ifdef UNICODE_ENABLE
process_unicode(keycode, record) &&
#endif
#ifdef UCIS_ENABLE
process_ucis(keycode, record) &&
#endif
#ifdef PRINTING_ENABLE
process_printer(keycode, record) &&
#endif
#ifdef UNICODEMAP_ENABLE
process_unicode_map(keycode, record) &&
#endif
true)) {
return false;
}
// Shift / paren setup
switch(keycode) {
case RESET:
if (record->event.pressed) {
reset_keyboard();
}
return false;
break;
case DEBUG:
if (record->event.pressed) {
print("\nDEBUG: enabled.\n");
debug_enable = true;
}
return false;
break;
#ifdef FAUXCLICKY_ENABLE
case FC_TOG:
if (record->event.pressed) {
FAUXCLICKY_TOGGLE;
}
return false;
break;
case FC_ON:
if (record->event.pressed) {
FAUXCLICKY_ON;
}
return false;
break;
case FC_OFF:
if (record->event.pressed) {
FAUXCLICKY_OFF;
}
return false;
break;
#endif
#ifdef RGBLIGHT_ENABLE
case RGB_TOG:
if (record->event.pressed) {
rgblight_toggle();
}
return false;
break;
case RGB_MOD:
if (record->event.pressed) {
rgblight_step();
}
return false;
break;
case RGB_HUI:
if (record->event.pressed) {
rgblight_increase_hue();
}
return false;
break;
case RGB_HUD:
if (record->event.pressed) {
rgblight_decrease_hue();
}
return false;
break;
case RGB_SAI:
if (record->event.pressed) {
rgblight_increase_sat();
}
return false;
break;
case RGB_SAD:
if (record->event.pressed) {
rgblight_decrease_sat();
}
return false;
break;
case RGB_VAI:
if (record->event.pressed) {
rgblight_increase_val();
}
return false;
break;
case RGB_VAD:
if (record->event.pressed) {
rgblight_decrease_val();
}
return false;
break;
#endif
#ifdef PROTOCOL_LUFA
case OUT_AUTO:
if (record->event.pressed) {
set_output(OUTPUT_AUTO);
}
return false;
break;
case OUT_USB:
if (record->event.pressed) {
set_output(OUTPUT_USB);
}
return false;
break;
#ifdef BLUETOOTH_ENABLE
case OUT_BT:
if (record->event.pressed) {
set_output(OUTPUT_BLUETOOTH);
}
return false;
break;
#endif
#ifdef ADAFRUIT_BLE_ENABLE
case OUT_BLE:
if (record->event.pressed) {
set_output(OUTPUT_ADAFRUIT_BLE);
}
return false;
break;
#endif
#endif
case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
if (record->event.pressed) {
// MAGIC actions (BOOTMAGIC without the boot)
if (!eeconfig_is_enabled()) {
eeconfig_init();
}
/* keymap config */
keymap_config.raw = eeconfig_read_keymap();
switch (keycode)
{
case MAGIC_SWAP_CONTROL_CAPSLOCK:
keymap_config.swap_control_capslock = true;
break;
case MAGIC_CAPSLOCK_TO_CONTROL:
keymap_config.capslock_to_control = true;
break;
case MAGIC_SWAP_LALT_LGUI:
keymap_config.swap_lalt_lgui = true;
break;
case MAGIC_SWAP_RALT_RGUI:
keymap_config.swap_ralt_rgui = true;
break;
case MAGIC_NO_GUI:
keymap_config.no_gui = true;
break;
case MAGIC_SWAP_GRAVE_ESC:
keymap_config.swap_grave_esc = true;
break;
case MAGIC_SWAP_BACKSLASH_BACKSPACE:
keymap_config.swap_backslash_backspace = true;
break;
case MAGIC_HOST_NKRO:
keymap_config.nkro = true;
break;
case MAGIC_SWAP_ALT_GUI:
keymap_config.swap_lalt_lgui = true;
keymap_config.swap_ralt_rgui = true;
break;
case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
keymap_config.swap_control_capslock = false;
break;
case MAGIC_UNCAPSLOCK_TO_CONTROL:
keymap_config.capslock_to_control = false;
break;
case MAGIC_UNSWAP_LALT_LGUI:
keymap_config.swap_lalt_lgui = false;
break;
case MAGIC_UNSWAP_RALT_RGUI:
keymap_config.swap_ralt_rgui = false;
break;
case MAGIC_UNNO_GUI:
keymap_config.no_gui = false;
break;
case MAGIC_UNSWAP_GRAVE_ESC:
keymap_config.swap_grave_esc = false;
break;
case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
keymap_config.swap_backslash_backspace = false;
break;
case MAGIC_UNHOST_NKRO:
keymap_config.nkro = false;
break;
case MAGIC_UNSWAP_ALT_GUI:
keymap_config.swap_lalt_lgui = false;
keymap_config.swap_ralt_rgui = false;
break;
case MAGIC_TOGGLE_NKRO:
keymap_config.nkro = !keymap_config.nkro;
break;
default:
break;
}
eeconfig_update_keymap(keymap_config.raw);
clear_keyboard(); // clear to prevent stuck keys
return false;
}
break;
case KC_LSPO: {
if (record->event.pressed) {
shift_interrupted[0] = false;
scs_timer = timer_read ();
register_mods(MOD_BIT(KC_LSFT));
}
else {
#ifdef DISABLE_SPACE_CADET_ROLLOVER
if (get_mods() & MOD_BIT(KC_RSFT)) {
shift_interrupted[0] = true;
shift_interrupted[1] = true;
}
#endif
if (!shift_interrupted[0] && timer_elapsed(scs_timer) < TAPPING_TERM) {
register_code(LSPO_KEY);
unregister_code(LSPO_KEY);
}
unregister_mods(MOD_BIT(KC_LSFT));
}
return false;
// break;
}
case KC_RSPC: {
if (record->event.pressed) {
shift_interrupted[1] = false;
scs_timer = timer_read ();
register_mods(MOD_BIT(KC_RSFT));
}
else {
#ifdef DISABLE_SPACE_CADET_ROLLOVER
if (get_mods() & MOD_BIT(KC_LSFT)) {
shift_interrupted[0] = true;
shift_interrupted[1] = true;
}
#endif
if (!shift_interrupted[1] && timer_elapsed(scs_timer) < TAPPING_TERM) {
register_code(RSPC_KEY);
unregister_code(RSPC_KEY);
}
unregister_mods(MOD_BIT(KC_RSFT));
}
return false;
// break;
}
default: {
shift_interrupted[0] = true;
shift_interrupted[1] = true;
break;
}
}
return process_action_kb(record);
}
const bool ascii_to_qwerty_shift_lut[0x80] PROGMEM = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 0
};
const uint8_t ascii_to_qwerty_keycode_lut[0x80] PROGMEM = {
0, 0, 0, 0, 0, 0, 0, 0,
KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, KC_ESC, 0, 0, 0, 0,
KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
};
/* for users whose OSes are set to Colemak */
#if 0
#include "keymap_colemak.h"
const bool ascii_to_colemak_shift_lut[0x80] PROGMEM = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 0
};
const uint8_t ascii_to_colemak_keycode_lut[0x80] PROGMEM = {
0, 0, 0, 0, 0, 0, 0, 0,
KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, KC_ESC, 0, 0, 0, 0,
KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
KC_8, KC_9, CM_SCLN, CM_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
KC_2, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
KC_GRV, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
};
#endif
void send_string(const char *str) {
while (1) {
uint8_t keycode;
uint8_t ascii_code = pgm_read_byte(str);
if (!ascii_code) break;
keycode = pgm_read_byte(&ascii_to_qwerty_keycode_lut[ascii_code]);
if (pgm_read_byte(&ascii_to_qwerty_shift_lut[ascii_code])) {
register_code(KC_LSFT);
register_code(keycode);
unregister_code(keycode);
unregister_code(KC_LSFT);
}
else {
register_code(keycode);
unregister_code(keycode);
}
++str;
}
}
void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
if (IS_LAYER_ON(layer1) && IS_LAYER_ON(layer2)) {
layer_on(layer3);
} else {
layer_off(layer3);
}
}
void tap_random_base64(void) {
#if defined(__AVR_ATmega32U4__)
uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
#else
uint8_t key = rand() % 64;
#endif
switch (key) {
case 0 ... 25:
register_code(KC_LSFT);
register_code(key + KC_A);
unregister_code(key + KC_A);
unregister_code(KC_LSFT);
break;
case 26 ... 51:
register_code(key - 26 + KC_A);
unregister_code(key - 26 + KC_A);
break;
case 52:
register_code(KC_0);
unregister_code(KC_0);
break;
case 53 ... 61:
register_code(key - 53 + KC_1);
unregister_code(key - 53 + KC_1);
break;
case 62:
register_code(KC_LSFT);
register_code(KC_EQL);
unregister_code(KC_EQL);
unregister_code(KC_LSFT);
break;
case 63:
register_code(KC_SLSH);
unregister_code(KC_SLSH);
break;
}
}
void matrix_init_quantum() {
#ifdef BACKLIGHT_ENABLE
backlight_init_ports();
#endif
matrix_init_kb();
}
void matrix_scan_quantum() {
#ifdef AUDIO_ENABLE
matrix_scan_music();
#endif
#ifdef TAP_DANCE_ENABLE
matrix_scan_tap_dance();
#endif
#ifdef COMBO_ENABLE
matrix_scan_combo();
#endif
matrix_scan_kb();
}
#if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
static const uint8_t backlight_pin = BACKLIGHT_PIN;
#if BACKLIGHT_PIN == B7
# define COM1x1 COM1C1
# define OCR1x OCR1C
#elif BACKLIGHT_PIN == B6
# define COM1x1 COM1B1
# define OCR1x OCR1B
#elif BACKLIGHT_PIN == B5
# define COM1x1 COM1A1
# define OCR1x OCR1A
#else
# define NO_BACKLIGHT_CLOCK
#endif
#ifndef BACKLIGHT_ON_STATE
#define BACKLIGHT_ON_STATE 0
#endif
__attribute__ ((weak))
void backlight_init_ports(void)
{
// Setup backlight pin as output and output to on state.
// DDRx |= n
_SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
#if BACKLIGHT_ON_STATE == 0
// PORTx &= ~n
_SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
#else
// PORTx |= n
_SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
#endif
#ifndef NO_BACKLIGHT_CLOCK
// Use full 16-bit resolution.
ICR1 = 0xFFFF;
// I could write a wall of text here to explain... but TL;DW
// Go read the ATmega32u4 datasheet.
// And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
// Pin PB7 = OCR1C (Timer 1, Channel C)
// Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
// (i.e. start high, go low when counter matches.)
// WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
// Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
TCCR1A = _BV(COM1x1) | _BV(WGM11); // = 0b00001010;
TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
#endif
backlight_init();
#ifdef BACKLIGHT_BREATHING
breathing_defaults();
#endif
}
__attribute__ ((weak))
void backlight_set(uint8_t level)
{
// Prevent backlight blink on lowest level
#if BACKLIGHT_ON_STATE == 0
// PORTx &= ~n
_SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
#else
// PORTx |= n
_SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
#endif
if ( level == 0 ) {
#ifndef NO_BACKLIGHT_CLOCK
// Turn off PWM control on backlight pin, revert to output low.
TCCR1A &= ~(_BV(COM1x1));
OCR1x = 0x0;
#else
#if BACKLIGHT_ON_STATE == 0
// PORTx |= n
_SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
#else
// PORTx &= ~n
_SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
#endif
#endif
}
#ifndef NO_BACKLIGHT_CLOCK
else if ( level == BACKLIGHT_LEVELS ) {
// Turn on PWM control of backlight pin
TCCR1A |= _BV(COM1x1);
// Set the brightness
OCR1x = 0xFFFF;
}
else {
// Turn on PWM control of backlight pin
TCCR1A |= _BV(COM1x1);
// Set the brightness
OCR1x = 0xFFFF >> ((BACKLIGHT_LEVELS - level) * ((BACKLIGHT_LEVELS + 1) / 2));
}
#endif
#ifdef BACKLIGHT_BREATHING
breathing_intensity_default();
#endif
}
#ifdef BACKLIGHT_BREATHING
#define BREATHING_NO_HALT 0
#define BREATHING_HALT_OFF 1
#define BREATHING_HALT_ON 2
static uint8_t breath_intensity;
static uint8_t breath_speed;
static uint16_t breathing_index;
static uint8_t breathing_halt;
void breathing_enable(void)
{
if (get_backlight_level() == 0)
{
breathing_index = 0;
}
else
{
// Set breathing_index to be at the midpoint (brightest point)
breathing_index = 0x20 << breath_speed;
}
breathing_halt = BREATHING_NO_HALT;
// Enable breathing interrupt
TIMSK1 |= _BV(OCIE1A);
}
void breathing_pulse(void)
{
if (get_backlight_level() == 0)
{
breathing_index = 0;
}
else
{
// Set breathing_index to be at the midpoint + 1 (brightest point)
breathing_index = 0x21 << breath_speed;
}
breathing_halt = BREATHING_HALT_ON;
// Enable breathing interrupt
TIMSK1 |= _BV(OCIE1A);
}
void breathing_disable(void)
{
// Disable breathing interrupt
TIMSK1 &= ~_BV(OCIE1A);
backlight_set(get_backlight_level());
}
void breathing_self_disable(void)
{
if (get_backlight_level() == 0)
{
breathing_halt = BREATHING_HALT_OFF;
}
else
{
breathing_halt = BREATHING_HALT_ON;
}
//backlight_set(get_backlight_level());
}
void breathing_toggle(void)
{
if (!is_breathing())
{
if (get_backlight_level() == 0)
{
breathing_index = 0;
}
else
{
// Set breathing_index to be at the midpoint + 1 (brightest point)
breathing_index = 0x21 << breath_speed;
}
breathing_halt = BREATHING_NO_HALT;
}
// Toggle breathing interrupt
TIMSK1 ^= _BV(OCIE1A);
// Restore backlight level
if (!is_breathing())
{
backlight_set(get_backlight_level());
}
}
bool is_breathing(void)
{
return (TIMSK1 && _BV(OCIE1A));
}
void breathing_intensity_default(void)
{
//breath_intensity = (uint8_t)((uint16_t)100 * (uint16_t)get_backlight_level() / (uint16_t)BACKLIGHT_LEVELS);
breath_intensity = ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2));
}
void breathing_intensity_set(uint8_t value)
{
breath_intensity = value;
}
void breathing_speed_default(void)
{
breath_speed = 4;
}
void breathing_speed_set(uint8_t value)
{
bool is_breathing_now = is_breathing();
uint8_t old_breath_speed = breath_speed;
if (is_breathing_now)
{
// Disable breathing interrupt
TIMSK1 &= ~_BV(OCIE1A);
}
breath_speed = value;
if (is_breathing_now)
{
// Adjust index to account for new speed
breathing_index = (( (uint8_t)( (breathing_index) >> old_breath_speed ) ) & 0x3F) << breath_speed;
// Enable breathing interrupt
TIMSK1 |= _BV(OCIE1A);
}
}
void breathing_speed_inc(uint8_t value)
{
if ((uint16_t)(breath_speed - value) > 10 )
{
breathing_speed_set(0);
}
else
{
breathing_speed_set(breath_speed - value);
}
}
void breathing_speed_dec(uint8_t value)
{
if ((uint16_t)(breath_speed + value) > 10 )
{
breathing_speed_set(10);
}
else
{
breathing_speed_set(breath_speed + value);
}
}
void breathing_defaults(void)
{
breathing_intensity_default();
breathing_speed_default();
breathing_halt = BREATHING_NO_HALT;
}
/* Breathing Sleep LED brighness(PWM On period) table
* (64[steps] * 4[duration]) / 64[PWM periods/s] = 4 second breath cycle
*
* http://www.wolframalpha.com/input/?i=%28sin%28+x%2F64*pi%29**8+*+255%2C+x%3D0+to+63
* (0..63).each {|x| p ((sin(x/64.0*PI)**8)*255).to_i }
*/
static const uint8_t breathing_table[64] PROGMEM = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 10,
15, 23, 32, 44, 58, 74, 93, 113, 135, 157, 179, 199, 218, 233, 245, 252,
255, 252, 245, 233, 218, 199, 179, 157, 135, 113, 93, 74, 58, 44, 32, 23,
15, 10, 6, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ISR(TIMER1_COMPA_vect)
{
// OCR1x = (pgm_read_byte(&breathing_table[ ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F ] )) * breath_intensity;
uint8_t local_index = ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F;
if (((breathing_halt == BREATHING_HALT_ON) && (local_index == 0x20)) || ((breathing_halt == BREATHING_HALT_OFF) && (local_index == 0x3F)))
{
// Disable breathing interrupt
TIMSK1 &= ~_BV(OCIE1A);
}
OCR1x = (uint16_t)(((uint16_t)pgm_read_byte(&breathing_table[local_index]) * 257)) >> breath_intensity;
}
#endif // breathing
#else // backlight
__attribute__ ((weak))
void backlight_init_ports(void)
{
}
__attribute__ ((weak))
void backlight_set(uint8_t level)
{
}
#endif // backlight
// Functions for spitting out values
//
void send_dword(uint32_t number) { // this might not actually work
uint16_t word = (number >> 16);
send_word(word);
send_word(number & 0xFFFFUL);
}
void send_word(uint16_t number) {
uint8_t byte = number >> 8;
send_byte(byte);
send_byte(number & 0xFF);
}
void send_byte(uint8_t number) {
uint8_t nibble = number >> 4;
send_nibble(nibble);
send_nibble(number & 0xF);
}
void send_nibble(uint8_t number) {
switch (number) {
case 0:
register_code(KC_0);
unregister_code(KC_0);
break;
case 1 ... 9:
register_code(KC_1 + (number - 1));
unregister_code(KC_1 + (number - 1));
break;
case 0xA ... 0xF:
register_code(KC_A + (number - 0xA));
unregister_code(KC_A + (number - 0xA));
break;
}
}
__attribute__((weak))
uint16_t hex_to_keycode(uint8_t hex)
{
if (hex == 0x0) {
return KC_0;
} else if (hex < 0xA) {
return KC_1 + (hex - 0x1);
} else {
return KC_A + (hex - 0xA);
}
}
void api_send_unicode(uint32_t unicode) {
#ifdef API_ENABLE
uint8_t chunk[4];
dword_to_bytes(unicode, chunk);
MT_SEND_DATA(DT_UNICODE, chunk, 5);
#endif
}
__attribute__ ((weak))
void led_set_user(uint8_t usb_led) {
}
__attribute__ ((weak))
void led_set_kb(uint8_t usb_led) {
led_set_user(usb_led);
}
__attribute__ ((weak))
void led_init_ports(void)
{
}
__attribute__ ((weak))
void led_set(uint8_t usb_led)
{
// Example LED Code
//
// // Using PE6 Caps Lock LED
// if (usb_led & (1<<USB_LED_CAPS_LOCK))
// {
// // Output high.
// DDRE |= (1<<6);
// PORTE |= (1<<6);
// }
// else
// {
// // Output low.
// DDRE &= ~(1<<6);
// PORTE &= ~(1<<6);
// }
led_set_kb(usb_led);
}
//------------------------------------------------------------------------------
// Override these functions in your keymap file to play different tunes on
// different events such as startup and bootloader jump
__attribute__ ((weak))
void startup_user() {}
__attribute__ ((weak))
void shutdown_user() {}
//------------------------------------------------------------------------------