qmk-firmware/platforms/chibios/drivers/ws2812_spi.c
Drashna Jaelre 7c10d00ca6
Add RGBW support to PWM and SPI drivers for ChibiOS (#14327)
* Add RGBW support to PWM and SPI drivers for ChibiOS

* Apply suggestions from code review

Co-authored-by: Ryan <fauxpark@gmail.com>

Co-authored-by: Ryan <fauxpark@gmail.com>
2021-09-18 17:28:57 +10:00

163 lines
5.9 KiB
C

#include "quantum.h"
#include "ws2812.h"
/* Adapted from https://github.com/gamazeps/ws2812b-chibios-SPIDMA/ */
// Define the spi your LEDs are plugged to here
#ifndef WS2812_SPI
# define WS2812_SPI SPID1
#endif
#ifndef WS2812_SPI_MOSI_PAL_MODE
# define WS2812_SPI_MOSI_PAL_MODE 5
#endif
#ifndef WS2812_SPI_SCK_PAL_MODE
# define WS2812_SPI_SCK_PAL_MODE 5
#endif
// Push Pull or Open Drain Configuration
// Default Push Pull
#ifndef WS2812_EXTERNAL_PULLUP
# if defined(USE_GPIOV1)
# define WS2812_MOSI_OUTPUT_MODE PAL_MODE_ALTERNATE_PUSHPULL
# else
# define WS2812_MOSI_OUTPUT_MODE PAL_MODE_ALTERNATE(WS2812_SPI_MOSI_PAL_MODE) | PAL_OUTPUT_TYPE_PUSHPULL
# endif
#else
# if defined(USE_GPIOV1)
# define WS2812_MOSI_OUTPUT_MODE PAL_MODE_ALTERNATE_OPENDRAIN
# else
# define WS2812_MOSI_OUTPUT_MODE PAL_MODE_ALTERNATE(WS2812_SPI_MOSI_PAL_MODE) | PAL_OUTPUT_TYPE_OPENDRAIN
# endif
#endif
// Define SPI config speed
// baudrate should target 3.2MHz
// F072 fpclk = 48MHz
// 48/16 = 3Mhz
#if WS2812_SPI_DIVISOR == 2
# define WS2812_SPI_DIVISOR_CR1_BR_X (0)
#elif WS2812_SPI_DIVISOR == 4
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_0)
#elif WS2812_SPI_DIVISOR == 8
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_1)
#elif WS2812_SPI_DIVISOR == 16 // same as default
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_1 | SPI_CR1_BR_0)
#elif WS2812_SPI_DIVISOR == 32
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_2)
#elif WS2812_SPI_DIVISOR == 64
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_2 | SPI_CR1_BR_0)
#elif WS2812_SPI_DIVISOR == 128
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_2 | SPI_CR1_BR_1)
#elif WS2812_SPI_DIVISOR == 256
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0)
#else
# define WS2812_SPI_DIVISOR_CR1_BR_X (SPI_CR1_BR_1 | SPI_CR1_BR_0) // default
#endif
// Use SPI circular buffer
#ifdef WS2812_SPI_USE_CIRCULAR_BUFFER
# define WS2812_SPI_BUFFER_MODE 1 // circular buffer
#else
# define WS2812_SPI_BUFFER_MODE 0 // normal buffer
#endif
#if defined(USE_GPIOV1)
# define WS2812_SCK_OUTPUT_MODE PAL_MODE_ALTERNATE_PUSHPULL
#else
# define WS2812_SCK_OUTPUT_MODE PAL_MODE_ALTERNATE(WS2812_SPI_SCK_PAL_MODE) | PAL_OUTPUT_TYPE_PUSHPULL
#endif
#define BYTES_FOR_LED_BYTE 4
#ifdef RGBW
# define WS2812_CHANNELS 4
#else
# define WS2812_CHANNELS 3
#endif
#define BYTES_FOR_LED (BYTES_FOR_LED_BYTE * WS2812_CHANNELS)
#define DATA_SIZE (BYTES_FOR_LED * RGBLED_NUM)
#define RESET_SIZE (1000 * WS2812_TRST_US / (2 * 1250))
#define PREAMBLE_SIZE 4
static uint8_t txbuf[PREAMBLE_SIZE + DATA_SIZE + RESET_SIZE] = {0};
/*
* As the trick here is to use the SPI to send a huge pattern of 0 and 1 to
* the ws2812b protocol, we use this helper function to translate bytes into
* 0s and 1s for the LED (with the appropriate timing).
*/
static uint8_t get_protocol_eq(uint8_t data, int pos) {
uint8_t eq = 0;
if (data & (1 << (2 * (3 - pos))))
eq = 0b1110;
else
eq = 0b1000;
if (data & (2 << (2 * (3 - pos))))
eq += 0b11100000;
else
eq += 0b10000000;
return eq;
}
static void set_led_color_rgb(LED_TYPE color, int pos) {
uint8_t* tx_start = &txbuf[PREAMBLE_SIZE];
#if (WS2812_BYTE_ORDER == WS2812_BYTE_ORDER_GRB)
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.r, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.b, j);
#elif (WS2812_BYTE_ORDER == WS2812_BYTE_ORDER_RGB)
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.r, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.b, j);
#elif (WS2812_BYTE_ORDER == WS2812_BYTE_ORDER_BGR)
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + j] = get_protocol_eq(color.b, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE + j] = get_protocol_eq(color.g, j);
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 2 + j] = get_protocol_eq(color.r, j);
#endif
#ifdef RGBW
for (int j = 0; j < 4; j++) tx_start[BYTES_FOR_LED * pos + BYTES_FOR_LED_BYTE * 4 + j] = get_protocol_eq(color.w, j);
#endif
}
void ws2812_init(void) {
palSetLineMode(RGB_DI_PIN, WS2812_MOSI_OUTPUT_MODE);
#ifdef WS2812_SPI_SCK_PIN
palSetLineMode(WS2812_SPI_SCK_PIN, WS2812_SCK_OUTPUT_MODE);
#endif // WS2812_SPI_SCK_PIN
// TODO: more dynamic baudrate
static const SPIConfig spicfg = {WS2812_SPI_BUFFER_MODE, NULL, PAL_PORT(RGB_DI_PIN), PAL_PAD(RGB_DI_PIN), WS2812_SPI_DIVISOR_CR1_BR_X};
spiAcquireBus(&WS2812_SPI); /* Acquire ownership of the bus. */
spiStart(&WS2812_SPI, &spicfg); /* Setup transfer parameters. */
spiSelect(&WS2812_SPI); /* Slave Select assertion. */
#ifdef WS2812_SPI_USE_CIRCULAR_BUFFER
spiStartSend(&WS2812_SPI, sizeof(txbuf) / sizeof(txbuf[0]), txbuf);
#endif
}
void ws2812_setleds(LED_TYPE* ledarray, uint16_t leds) {
static bool s_init = false;
if (!s_init) {
ws2812_init();
s_init = true;
}
for (uint8_t i = 0; i < leds; i++) {
set_led_color_rgb(ledarray[i], i);
}
// Send async - each led takes ~0.03ms, 50 leds ~1.5ms, animations flushing faster than send will cause issues.
// Instead spiSend can be used to send synchronously (or the thread logic can be added back).
#ifndef WS2812_SPI_USE_CIRCULAR_BUFFER
# ifdef WS2812_SPI_SYNC
spiSend(&WS2812_SPI, sizeof(txbuf) / sizeof(txbuf[0]), txbuf);
# else
spiStartSend(&WS2812_SPI, sizeof(txbuf) / sizeof(txbuf[0]), txbuf);
# endif
#endif
}