qmk-firmware/drivers/oled/ssd1306_sh1106.c

795 lines
25 KiB
C

/*
Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "i2c_master.h"
#include "oled_driver.h"
#include OLED_FONT_H
#include "timer.h"
#include "print.h"
#include <string.h>
#include "progmem.h"
#include "keyboard.h"
// Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
// for SH1106: https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf
// Fundamental Commands
#define CONTRAST 0x81
#define DISPLAY_ALL_ON 0xA5
#define DISPLAY_ALL_ON_RESUME 0xA4
#define NORMAL_DISPLAY 0xA6
#define INVERT_DISPLAY 0xA7
#define DISPLAY_ON 0xAF
#define DISPLAY_OFF 0xAE
#define NOP 0xE3
// Scrolling Commands
#define ACTIVATE_SCROLL 0x2F
#define DEACTIVATE_SCROLL 0x2E
#define SCROLL_RIGHT 0x26
#define SCROLL_LEFT 0x27
#define SCROLL_RIGHT_UP 0x29
#define SCROLL_LEFT_UP 0x2A
// Addressing Setting Commands
#define MEMORY_MODE 0x20
#define COLUMN_ADDR 0x21
#define PAGE_ADDR 0x22
#define PAM_SETCOLUMN_LSB 0x00
#define PAM_SETCOLUMN_MSB 0x10
#define PAM_PAGE_ADDR 0xB0 // 0xb0 -- 0xb7
// Hardware Configuration Commands
#define DISPLAY_START_LINE 0x40
#define SEGMENT_REMAP 0xA0
#define SEGMENT_REMAP_INV 0xA1
#define MULTIPLEX_RATIO 0xA8
#define COM_SCAN_INC 0xC0
#define COM_SCAN_DEC 0xC8
#define DISPLAY_OFFSET 0xD3
#define COM_PINS 0xDA
#define COM_PINS_SEQ 0x02
#define COM_PINS_ALT 0x12
#define COM_PINS_SEQ_LR 0x22
#define COM_PINS_ALT_LR 0x32
// Timing & Driving Commands
#define DISPLAY_CLOCK 0xD5
#define PRE_CHARGE_PERIOD 0xD9
#define VCOM_DETECT 0xDB
// Advance Graphic Commands
#define FADE_BLINK 0x23
#define ENABLE_FADE 0x20
#define ENABLE_BLINK 0x30
// Charge Pump Commands
#define CHARGE_PUMP 0x8D
// Misc defines
#ifndef OLED_BLOCK_COUNT
# define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8)
#endif
#ifndef OLED_BLOCK_SIZE
# define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT)
#endif
#define OLED_ALL_BLOCKS_MASK (((((OLED_BLOCK_TYPE)1 << (OLED_BLOCK_COUNT - 1)) - 1) << 1) | 1)
// i2c defines
#define I2C_CMD 0x00
#define I2C_DATA 0x40
#if defined(__AVR__)
# define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
#else // defined(__AVR__)
# define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
#endif // defined(__AVR__)
#define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
#define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, OLED_I2C_TIMEOUT)
#define HAS_FLAGS(bits, flags) ((bits & flags) == flags)
// Display buffer's is the same as the OLED memory layout
// this is so we don't end up with rounding errors with
// parts of the display unusable or don't get cleared correctly
// and also allows for drawing & inverting
uint8_t oled_buffer[OLED_MATRIX_SIZE];
uint8_t * oled_cursor;
OLED_BLOCK_TYPE oled_dirty = 0;
bool oled_initialized = false;
bool oled_active = false;
bool oled_scrolling = false;
bool oled_inverted = false;
uint8_t oled_brightness = OLED_BRIGHTNESS;
oled_rotation_t oled_rotation = 0;
uint8_t oled_rotation_width = 0;
uint8_t oled_scroll_speed = 0; // this holds the speed after being remapped to ssd1306 internal values
uint8_t oled_scroll_start = 0;
uint8_t oled_scroll_end = 7;
#if OLED_TIMEOUT > 0
uint32_t oled_timeout;
#endif
#if OLED_SCROLL_TIMEOUT > 0
uint32_t oled_scroll_timeout;
#endif
#if OLED_UPDATE_INTERVAL > 0
uint16_t oled_update_timeout;
#endif
// Internal variables to reduce math instructions
#if defined(__AVR__)
// identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently
// probably should move this into i2c_master...
static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t *data, uint16_t length, uint16_t timeout) {
i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
for (uint16_t i = 0; i < length && status >= 0; i++) {
status = i2c_write(pgm_read_byte((const char *)data++), timeout);
if (status) break;
}
i2c_stop();
return status;
}
#endif
// Flips the rendering bits for a character at the current cursor position
static void InvertCharacter(uint8_t *cursor) {
const uint8_t *end = cursor + OLED_FONT_WIDTH;
while (cursor < end) {
*cursor = ~(*cursor);
cursor++;
}
}
bool oled_init(oled_rotation_t rotation) {
#if defined(USE_I2C) && defined(SPLIT_KEYBOARD)
if (!is_keyboard_master()) {
return true;
}
#endif
oled_rotation = oled_init_user(oled_init_kb(rotation));
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
oled_rotation_width = OLED_DISPLAY_WIDTH;
} else {
oled_rotation_width = OLED_DISPLAY_HEIGHT;
}
i2c_init();
static const uint8_t PROGMEM display_setup1[] = {
I2C_CMD,
DISPLAY_OFF,
DISPLAY_CLOCK,
0x80,
MULTIPLEX_RATIO,
OLED_DISPLAY_HEIGHT - 1,
DISPLAY_OFFSET,
0x00,
DISPLAY_START_LINE | 0x00,
CHARGE_PUMP,
0x14,
#if (OLED_IC != OLED_IC_SH1106)
// MEMORY_MODE is unsupported on SH1106 (Page Addressing only)
MEMORY_MODE,
0x00, // Horizontal addressing mode
#endif
};
if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
print("oled_init cmd set 1 failed\n");
return false;
}
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
static const uint8_t PROGMEM display_normal[] = {I2C_CMD, SEGMENT_REMAP_INV, COM_SCAN_DEC};
if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
print("oled_init cmd normal rotation failed\n");
return false;
}
} else {
static const uint8_t PROGMEM display_flipped[] = {I2C_CMD, SEGMENT_REMAP, COM_SCAN_INC};
if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
print("display_flipped failed\n");
return false;
}
}
static const uint8_t PROGMEM display_setup2[] = {I2C_CMD, COM_PINS, OLED_COM_PINS, CONTRAST, OLED_BRIGHTNESS, PRE_CHARGE_PERIOD, 0xF1, VCOM_DETECT, 0x20, DISPLAY_ALL_ON_RESUME, NORMAL_DISPLAY, DEACTIVATE_SCROLL, DISPLAY_ON};
if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
print("display_setup2 failed\n");
return false;
}
#if OLED_TIMEOUT > 0
oled_timeout = timer_read32() + OLED_TIMEOUT;
#endif
#if OLED_SCROLL_TIMEOUT > 0
oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
#endif
oled_clear();
oled_initialized = true;
oled_active = true;
oled_scrolling = false;
return true;
}
__attribute__((weak)) oled_rotation_t oled_init_kb(oled_rotation_t rotation) {
return rotation;
}
__attribute__((weak)) oled_rotation_t oled_init_user(oled_rotation_t rotation) {
return rotation;
}
void oled_clear(void) {
memset(oled_buffer, 0, sizeof(oled_buffer));
oled_cursor = &oled_buffer[0];
oled_dirty = OLED_ALL_BLOCKS_MASK;
}
static void calc_bounds(uint8_t update_start, uint8_t *cmd_array) {
// Calculate commands to set memory addressing bounds.
uint8_t start_page = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
#if (OLED_IC == OLED_IC_SH1106)
// Commands for Page Addressing Mode. Sets starting page and column; has no end bound.
// Column value must be split into high and low nybble and sent as two commands.
cmd_array[0] = PAM_PAGE_ADDR | start_page;
cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f);
cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f);
cmd_array[3] = NOP;
cmd_array[4] = NOP;
cmd_array[5] = NOP;
#else
// Commands for use in Horizontal Addressing mode.
cmd_array[1] = start_column;
cmd_array[4] = start_page;
cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
#endif
}
static void calc_bounds_90(uint8_t update_start, uint8_t *cmd_array) {
cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];
;
cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
}
uint8_t crot(uint8_t a, int8_t n) {
const uint8_t mask = 0x7;
n &= mask;
return a << n | a >> (-n & mask);
}
static void rotate_90(const uint8_t *src, uint8_t *dest) {
for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
uint8_t selector = (1 << i);
for (uint8_t j = 0; j < 8; ++j) {
dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
}
}
}
void oled_render(void) {
// Do we have work to do?
oled_dirty &= OLED_ALL_BLOCKS_MASK;
if (!oled_dirty || !oled_initialized || oled_scrolling) {
return;
}
// Turn on display if it is off
oled_on();
uint8_t update_start = 0;
while (oled_dirty) { // render all dirty blocks
// Find next dirty block
while (!(oled_dirty & ((OLED_BLOCK_TYPE)1 << update_start))) {
++update_start;
}
// Set column & page position
static uint8_t display_start[] = {I2C_CMD, COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1, PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1};
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
} else {
calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
}
// Send column & page position
if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
print("oled_render offset command failed\n");
return;
}
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
// Send render data chunk as is
if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
print("oled_render data failed\n");
return;
}
} else {
// Rotate the render chunks
const static uint8_t source_map[] = OLED_SOURCE_MAP;
const static uint8_t target_map[] = OLED_TARGET_MAP;
static uint8_t temp_buffer[OLED_BLOCK_SIZE];
memset(temp_buffer, 0, sizeof(temp_buffer));
for (uint8_t i = 0; i < sizeof(source_map); ++i) {
rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
}
// Send render data chunk after rotating
if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
print("oled_render90 data failed\n");
return;
}
}
// Clear dirty flag of just rendered block
oled_dirty &= ~((OLED_BLOCK_TYPE)1 << update_start);
}
}
void oled_set_cursor(uint8_t col, uint8_t line) {
uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
// Out of bounds?
if (index >= OLED_MATRIX_SIZE) {
index = 0;
}
oled_cursor = &oled_buffer[index];
}
void oled_advance_page(bool clearPageRemainder) {
uint16_t index = oled_cursor - &oled_buffer[0];
uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
if (clearPageRemainder) {
// Remaining Char count
remaining = remaining / OLED_FONT_WIDTH;
// Write empty character until next line
while (remaining--)
oled_write_char(' ', false);
} else {
// Next page index out of bounds?
if (index + remaining >= OLED_MATRIX_SIZE) {
index = 0;
remaining = 0;
}
oled_cursor = &oled_buffer[index + remaining];
}
}
void oled_advance_char(void) {
uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
// Do we have enough space on the current line for the next character
if (remainingSpace < OLED_FONT_WIDTH) {
nextIndex += remainingSpace;
}
// Did we go out of bounds
if (nextIndex >= OLED_MATRIX_SIZE) {
nextIndex = 0;
}
// Update cursor position
oled_cursor = &oled_buffer[nextIndex];
}
// Main handler that writes character data to the display buffer
void oled_write_char(const char data, bool invert) {
// Advance to the next line if newline
if (data == '\n') {
// Old source wrote ' ' until end of line...
oled_advance_page(true);
return;
}
if (data == '\r') {
oled_advance_page(false);
return;
}
// copy the current render buffer to check for dirty after
static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
_Static_assert(sizeof(font) >= ((OLED_FONT_END + 1 - OLED_FONT_START) * OLED_FONT_WIDTH), "OLED_FONT_END references outside array");
// set the reder buffer data
uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
} else {
const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
}
// Invert if needed
if (invert) {
InvertCharacter(oled_cursor);
}
// Dirty check
if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
uint16_t index = oled_cursor - &oled_buffer[0];
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
// Edgecase check if the written data spans the 2 chunks
oled_dirty |= ((OLED_BLOCK_TYPE)1 << ((index + OLED_FONT_WIDTH - 1) / OLED_BLOCK_SIZE));
}
// Finally move to the next char
oled_advance_char();
}
void oled_write(const char *data, bool invert) {
const char *end = data + strlen(data);
while (data < end) {
oled_write_char(*data, invert);
data++;
}
}
void oled_write_ln(const char *data, bool invert) {
oled_write(data, invert);
oled_advance_page(true);
}
void oled_pan(bool left) {
uint16_t i = 0;
for (uint16_t y = 0; y < OLED_DISPLAY_HEIGHT / 8; y++) {
if (left) {
for (uint16_t x = 0; x < OLED_DISPLAY_WIDTH - 1; x++) {
i = y * OLED_DISPLAY_WIDTH + x;
oled_buffer[i] = oled_buffer[i + 1];
}
} else {
for (uint16_t x = OLED_DISPLAY_WIDTH - 1; x > 0; x--) {
i = y * OLED_DISPLAY_WIDTH + x;
oled_buffer[i] = oled_buffer[i - 1];
}
}
}
oled_dirty = OLED_ALL_BLOCKS_MASK;
}
oled_buffer_reader_t oled_read_raw(uint16_t start_index) {
if (start_index > OLED_MATRIX_SIZE) start_index = OLED_MATRIX_SIZE;
oled_buffer_reader_t ret_reader;
ret_reader.current_element = &oled_buffer[start_index];
ret_reader.remaining_element_count = OLED_MATRIX_SIZE - start_index;
return ret_reader;
}
void oled_write_raw_byte(const char data, uint16_t index) {
if (index > OLED_MATRIX_SIZE) index = OLED_MATRIX_SIZE;
if (oled_buffer[index] == data) return;
oled_buffer[index] = data;
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
}
void oled_write_raw(const char *data, uint16_t size) {
uint16_t cursor_start_index = oled_cursor - &oled_buffer[0];
if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index;
for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) {
uint8_t c = *data++;
if (oled_buffer[i] == c) continue;
oled_buffer[i] = c;
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
}
}
void oled_write_pixel(uint8_t x, uint8_t y, bool on) {
if (x >= oled_rotation_width) {
return;
}
uint16_t index = x + (y / 8) * oled_rotation_width;
if (index >= OLED_MATRIX_SIZE) {
return;
}
uint8_t data = oled_buffer[index];
if (on) {
data |= (1 << (y % 8));
} else {
data &= ~(1 << (y % 8));
}
if (oled_buffer[index] != data) {
oled_buffer[index] = data;
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
}
}
#if defined(__AVR__)
void oled_write_P(const char *data, bool invert) {
uint8_t c = pgm_read_byte(data);
while (c != 0) {
oled_write_char(c, invert);
c = pgm_read_byte(++data);
}
}
void oled_write_ln_P(const char *data, bool invert) {
oled_write_P(data, invert);
oled_advance_page(true);
}
void oled_write_raw_P(const char *data, uint16_t size) {
uint16_t cursor_start_index = oled_cursor - &oled_buffer[0];
if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index;
for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) {
uint8_t c = pgm_read_byte(data++);
if (oled_buffer[i] == c) continue;
oled_buffer[i] = c;
oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
}
}
#endif // defined(__AVR__)
bool oled_on(void) {
if (!oled_initialized) {
return oled_active;
}
#if OLED_TIMEOUT > 0
oled_timeout = timer_read32() + OLED_TIMEOUT;
#endif
static const uint8_t PROGMEM display_on[] =
#ifdef OLED_FADE_OUT
{I2C_CMD, FADE_BLINK, 0x00};
#else
{I2C_CMD, DISPLAY_ON};
#endif
if (!oled_active) {
if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
print("oled_on cmd failed\n");
return oled_active;
}
oled_active = true;
}
return oled_active;
}
bool oled_off(void) {
if (!oled_initialized) {
return !oled_active;
}
static const uint8_t PROGMEM display_off[] =
#ifdef OLED_FADE_OUT
{I2C_CMD, FADE_BLINK, ENABLE_FADE | OLED_FADE_OUT_INTERVAL};
#else
{I2C_CMD, DISPLAY_OFF};
#endif
if (oled_active) {
if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
print("oled_off cmd failed\n");
return oled_active;
}
oled_active = false;
}
return !oled_active;
}
bool is_oled_on(void) {
return oled_active;
}
uint8_t oled_set_brightness(uint8_t level) {
if (!oled_initialized) {
return oled_brightness;
}
uint8_t set_contrast[] = {I2C_CMD, CONTRAST, level};
if (oled_brightness != level) {
if (I2C_TRANSMIT(set_contrast) != I2C_STATUS_SUCCESS) {
print("set_brightness cmd failed\n");
return oled_brightness;
}
oled_brightness = level;
}
return oled_brightness;
}
uint8_t oled_get_brightness(void) {
return oled_brightness;
}
// Set the specific 8 lines rows of the screen to scroll.
// 0 is the default for start, and 7 for end, which is the entire
// height of the screen. For 128x32 screens, rows 4-7 are not used.
void oled_scroll_set_area(uint8_t start_line, uint8_t end_line) {
oled_scroll_start = start_line;
oled_scroll_end = end_line;
}
void oled_scroll_set_speed(uint8_t speed) {
// Sets the speed for scrolling... does not take effect
// until scrolling is either started or restarted
// the ssd1306 supports 8 speeds
// FrameRate2 speed = 7
// FrameRate3 speed = 4
// FrameRate4 speed = 5
// FrameRate5 speed = 0
// FrameRate25 speed = 6
// FrameRate64 speed = 1
// FrameRate128 speed = 2
// FrameRate256 speed = 3
// for ease of use these are remaped here to be in order
static const uint8_t scroll_remap[8] = {7, 4, 5, 0, 6, 1, 2, 3};
oled_scroll_speed = scroll_remap[speed];
}
bool oled_scroll_right(void) {
if (!oled_initialized) {
return oled_scrolling;
}
// Dont enable scrolling if we need to update the display
// This prevents scrolling of bad data from starting the scroll too early after init
if (!oled_dirty && !oled_scrolling) {
uint8_t display_scroll_right[] = {I2C_CMD, SCROLL_RIGHT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
if (I2C_TRANSMIT(display_scroll_right) != I2C_STATUS_SUCCESS) {
print("oled_scroll_right cmd failed\n");
return oled_scrolling;
}
oled_scrolling = true;
}
return oled_scrolling;
}
bool oled_scroll_left(void) {
if (!oled_initialized) {
return oled_scrolling;
}
// Dont enable scrolling if we need to update the display
// This prevents scrolling of bad data from starting the scroll too early after init
if (!oled_dirty && !oled_scrolling) {
uint8_t display_scroll_left[] = {I2C_CMD, SCROLL_LEFT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
if (I2C_TRANSMIT(display_scroll_left) != I2C_STATUS_SUCCESS) {
print("oled_scroll_left cmd failed\n");
return oled_scrolling;
}
oled_scrolling = true;
}
return oled_scrolling;
}
bool oled_scroll_off(void) {
if (!oled_initialized) {
return !oled_scrolling;
}
if (oled_scrolling) {
static const uint8_t PROGMEM display_scroll_off[] = {I2C_CMD, DEACTIVATE_SCROLL};
if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
print("oled_scroll_off cmd failed\n");
return oled_scrolling;
}
oled_scrolling = false;
oled_dirty = OLED_ALL_BLOCKS_MASK;
}
return !oled_scrolling;
}
bool is_oled_scrolling(void) {
return oled_scrolling;
}
bool oled_invert(bool invert) {
if (!oled_initialized) {
return oled_inverted;
}
if (invert && !oled_inverted) {
static const uint8_t PROGMEM display_inverted[] = {I2C_CMD, INVERT_DISPLAY};
if (I2C_TRANSMIT_P(display_inverted) != I2C_STATUS_SUCCESS) {
print("oled_invert cmd failed\n");
return oled_inverted;
}
oled_inverted = true;
} else if (!invert && oled_inverted) {
static const uint8_t PROGMEM display_normal[] = {I2C_CMD, NORMAL_DISPLAY};
if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
print("oled_invert cmd failed\n");
return oled_inverted;
}
oled_inverted = false;
}
return oled_inverted;
}
uint8_t oled_max_chars(void) {
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
}
return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
}
uint8_t oled_max_lines(void) {
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
}
return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
}
void oled_task(void) {
if (!oled_initialized) {
return;
}
#if OLED_UPDATE_INTERVAL > 0
if (timer_elapsed(oled_update_timeout) >= OLED_UPDATE_INTERVAL) {
oled_update_timeout = timer_read();
oled_set_cursor(0, 0);
oled_task_kb();
}
#else
oled_set_cursor(0, 0);
oled_task_kb();
#endif
#if OLED_SCROLL_TIMEOUT > 0
if (oled_dirty && oled_scrolling) {
oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
oled_scroll_off();
}
#endif
// Smart render system, no need to check for dirty
oled_render();
// Display timeout check
#if OLED_TIMEOUT > 0
if (oled_active && timer_expired32(timer_read32(), oled_timeout)) {
oled_off();
}
#endif
#if OLED_SCROLL_TIMEOUT > 0
if (!oled_scrolling && timer_expired32(timer_read32(), oled_scroll_timeout)) {
# ifdef OLED_SCROLL_TIMEOUT_RIGHT
oled_scroll_right();
# else
oled_scroll_left();
# endif
}
#endif
}
__attribute__((weak)) bool oled_task_kb(void) {
return oled_task_user();
}
__attribute__((weak)) bool oled_task_user(void) {
return true;
}