796 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			796 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include <ch.h>
 | 
						|
#include <hal.h>
 | 
						|
 | 
						|
#include "eeconfig.h"
 | 
						|
 | 
						|
/*************************************/
 | 
						|
/*          Hardware backend         */
 | 
						|
/*                                   */
 | 
						|
/*    Code from PJRC/Teensyduino     */
 | 
						|
/*************************************/
 | 
						|
 | 
						|
/* Teensyduino Core Library
 | 
						|
 * http://www.pjrc.com/teensy/
 | 
						|
 * Copyright (c) 2013 PJRC.COM, LLC.
 | 
						|
 *
 | 
						|
 * Permission is hereby granted, free of charge, to any person obtaining
 | 
						|
 * a copy of this software and associated documentation files (the
 | 
						|
 * "Software"), to deal in the Software without restriction, including
 | 
						|
 * without limitation the rights to use, copy, modify, merge, publish,
 | 
						|
 * distribute, sublicense, and/or sell copies of the Software, and to
 | 
						|
 * permit persons to whom the Software is furnished to do so, subject to
 | 
						|
 * the following conditions:
 | 
						|
 *
 | 
						|
 * 1. The above copyright notice and this permission notice shall be
 | 
						|
 * included in all copies or substantial portions of the Software.
 | 
						|
 *
 | 
						|
 * 2. If the Software is incorporated into a build system that allows
 | 
						|
 * selection among a list of target devices, then similar target
 | 
						|
 * devices manufactured by PJRC.COM must be included in the list of
 | 
						|
 * target devices and selectable in the same manner.
 | 
						|
 *
 | 
						|
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | 
						|
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | 
						|
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | 
						|
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | 
						|
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | 
						|
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | 
						|
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | 
						|
 * SOFTWARE.
 | 
						|
 */
 | 
						|
 | 
						|
#define SMC_PMSTAT_RUN ((uint8_t)0x01)
 | 
						|
#define SMC_PMSTAT_HSRUN ((uint8_t)0x80)
 | 
						|
 | 
						|
#define F_CPU KINETIS_SYSCLK_FREQUENCY
 | 
						|
 | 
						|
static inline int kinetis_hsrun_disable(void) {
 | 
						|
#if defined(MK66F18)
 | 
						|
    if (SMC->PMSTAT == SMC_PMSTAT_HSRUN) {
 | 
						|
// First, reduce the CPU clock speed, but do not change
 | 
						|
// the peripheral speed (F_BUS).  Serial1 & Serial2 baud
 | 
						|
// rates will be impacted, but most other peripherals
 | 
						|
// will continue functioning at the same speed.
 | 
						|
#    if F_CPU == 256000000 && F_BUS == 64000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7);  // TODO: TEST
 | 
						|
#    elif F_CPU == 256000000 && F_BUS == 128000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7);  // TODO: TEST
 | 
						|
#    elif F_CPU == 240000000 && F_BUS == 60000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7);  // ok
 | 
						|
#    elif F_CPU == 240000000 && F_BUS == 80000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8);  // ok
 | 
						|
#    elif F_CPU == 240000000 && F_BUS == 120000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7);  // ok
 | 
						|
#    elif F_CPU == 216000000 && F_BUS == 54000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7);  // ok
 | 
						|
#    elif F_CPU == 216000000 && F_BUS == 72000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8);  // ok
 | 
						|
#    elif F_CPU == 216000000 && F_BUS == 108000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7);  // ok
 | 
						|
#    elif F_CPU == 192000000 && F_BUS == 48000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7);  // ok
 | 
						|
#    elif F_CPU == 192000000 && F_BUS == 64000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8);  // ok
 | 
						|
#    elif F_CPU == 192000000 && F_BUS == 96000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7);  // ok
 | 
						|
#    elif F_CPU == 180000000 && F_BUS == 60000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8);  // ok
 | 
						|
#    elif F_CPU == 180000000 && F_BUS == 90000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7);  // ok
 | 
						|
#    elif F_CPU == 168000000 && F_BUS == 56000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5);  // ok
 | 
						|
#    elif F_CPU == 144000000 && F_BUS == 48000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5);  // ok
 | 
						|
#    elif F_CPU == 144000000 && F_BUS == 72000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 5);  // ok
 | 
						|
#    elif F_CPU == 120000000 && F_BUS == 60000000
 | 
						|
        SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) |
 | 
						|
#        if defined(MK66F18)
 | 
						|
                       SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) |
 | 
						|
#        endif
 | 
						|
                       SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1);
 | 
						|
#    else
 | 
						|
        return 0;
 | 
						|
#    endif
 | 
						|
        // Then turn off HSRUN mode
 | 
						|
        SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(0);
 | 
						|
        while (SMC->PMSTAT == SMC_PMSTAT_HSRUN)
 | 
						|
            ;  // wait
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int kinetis_hsrun_enable(void) {
 | 
						|
#if defined(MK66F18)
 | 
						|
    if (SMC->PMSTAT == SMC_PMSTAT_RUN) {
 | 
						|
        // Turn HSRUN mode on
 | 
						|
        SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(3);
 | 
						|
        while (SMC->PMSTAT != SMC_PMSTAT_HSRUN) {
 | 
						|
            ;
 | 
						|
        }  // wait
 | 
						|
// Then configure clock for full speed
 | 
						|
#    if F_CPU == 256000000 && F_BUS == 64000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
 | 
						|
#    elif F_CPU == 256000000 && F_BUS == 128000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
 | 
						|
#    elif F_CPU == 240000000 && F_BUS == 60000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
 | 
						|
#    elif F_CPU == 240000000 && F_BUS == 80000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
 | 
						|
#    elif F_CPU == 240000000 && F_BUS == 120000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
 | 
						|
#    elif F_CPU == 216000000 && F_BUS == 54000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
 | 
						|
#    elif F_CPU == 216000000 && F_BUS == 72000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
 | 
						|
#    elif F_CPU == 216000000 && F_BUS == 108000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
 | 
						|
#    elif F_CPU == 192000000 && F_BUS == 48000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 6);
 | 
						|
#    elif F_CPU == 192000000 && F_BUS == 64000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
 | 
						|
#    elif F_CPU == 192000000 && F_BUS == 96000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
 | 
						|
#    elif F_CPU == 180000000 && F_BUS == 60000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
 | 
						|
#    elif F_CPU == 180000000 && F_BUS == 90000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
 | 
						|
#    elif F_CPU == 168000000 && F_BUS == 56000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 5);
 | 
						|
#    elif F_CPU == 144000000 && F_BUS == 48000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 4);
 | 
						|
#    elif F_CPU == 144000000 && F_BUS == 72000000
 | 
						|
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 4);
 | 
						|
#    elif F_CPU == 120000000 && F_BUS == 60000000
 | 
						|
        SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) |
 | 
						|
#        if defined(MK66F18)
 | 
						|
                       SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) |
 | 
						|
#        endif
 | 
						|
                       SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1);
 | 
						|
#    else
 | 
						|
        return 0;
 | 
						|
#    endif
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(K20x) || defined(MK66F18) /* chip selection */
 | 
						|
/* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */
 | 
						|
 | 
						|
// The EEPROM is really RAM with a hardware-based backup system to
 | 
						|
// flash memory.  Selecting a smaller size EEPROM allows more wear
 | 
						|
// leveling, for higher write endurance.  If you edit this file,
 | 
						|
// set this to the smallest size your application can use.  Also,
 | 
						|
// due to Freescale's implementation, writing 16 or 32 bit words
 | 
						|
// (aligned to 2 or 4 byte boundaries) has twice the endurance
 | 
						|
// compared to writing 8 bit bytes.
 | 
						|
//
 | 
						|
#    ifndef EEPROM_SIZE
 | 
						|
#        define EEPROM_SIZE 32
 | 
						|
#    endif
 | 
						|
 | 
						|
/*
 | 
						|
    ^^^ Here be dragons:
 | 
						|
        NXP AppNote AN4282 section 3.1 states that partitioning must only be done once.
 | 
						|
        Once EEPROM partitioning is done, the size is locked to this initial configuration.
 | 
						|
        Attempts to modify the EEPROM_SIZE setting may brick your board.
 | 
						|
*/
 | 
						|
 | 
						|
// Writing unaligned 16 or 32 bit data is handled automatically when
 | 
						|
// this is defined, but at a cost of extra code size.  Without this,
 | 
						|
// any unaligned write will cause a hard fault exception!  If you're
 | 
						|
// absolutely sure all 16 and 32 bit writes will be aligned, you can
 | 
						|
// remove the extra unnecessary code.
 | 
						|
//
 | 
						|
#    define HANDLE_UNALIGNED_WRITES
 | 
						|
 | 
						|
#    if defined(K20x)
 | 
						|
#        define EEPROM_MAX 2048
 | 
						|
#        define EEPARTITION 0x03  // all 32K dataflash for EEPROM, none for Data
 | 
						|
#        define EEESPLIT 0x30     // must be 0x30 on these chips
 | 
						|
#    elif defined(MK66F18)
 | 
						|
#        define EEPROM_MAX 4096
 | 
						|
#        define EEPARTITION 0x05  // 128K dataflash for EEPROM, 128K for Data
 | 
						|
#        define EEESPLIT 0x10     // best endurance: 0x00 = first 12%, 0x10 = first 25%, 0x30 = all equal
 | 
						|
#    endif
 | 
						|
 | 
						|
// Minimum EEPROM Endurance
 | 
						|
// ------------------------
 | 
						|
#    if (EEPROM_SIZE == 4096)
 | 
						|
#        define EEESIZE 0x02
 | 
						|
#    elif (EEPROM_SIZE == 2048)  // 35000 writes/byte or 70000 writes/word
 | 
						|
#        define EEESIZE 0x03
 | 
						|
#    elif (EEPROM_SIZE == 1024)  // 75000 writes/byte or 150000 writes/word
 | 
						|
#        define EEESIZE 0x04
 | 
						|
#    elif (EEPROM_SIZE == 512)  // 155000 writes/byte or 310000 writes/word
 | 
						|
#        define EEESIZE 0x05
 | 
						|
#    elif (EEPROM_SIZE == 256)  // 315000 writes/byte or 630000 writes/word
 | 
						|
#        define EEESIZE 0x06
 | 
						|
#    elif (EEPROM_SIZE == 128)  // 635000 writes/byte or 1270000 writes/word
 | 
						|
#        define EEESIZE 0x07
 | 
						|
#    elif (EEPROM_SIZE == 64)  // 1275000 writes/byte or 2550000 writes/word
 | 
						|
#        define EEESIZE 0x08
 | 
						|
#    elif (EEPROM_SIZE == 32)  // 2555000 writes/byte or 5110000 writes/word
 | 
						|
#        define EEESIZE 0x09
 | 
						|
#    endif
 | 
						|
 | 
						|
/** \brief eeprom initialization
 | 
						|
 *
 | 
						|
 * FIXME: needs doc
 | 
						|
 */
 | 
						|
void eeprom_initialize(void) {
 | 
						|
    uint32_t count          = 0;
 | 
						|
    uint16_t do_flash_cmd[] = {0xf06f, 0x037f, 0x7003, 0x7803, 0xf013, 0x0f80, 0xd0fb, 0x4770};
 | 
						|
    uint8_t  status;
 | 
						|
 | 
						|
    if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) {
 | 
						|
        uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
        if (stat) FTFL->FSTAT = stat;
 | 
						|
 | 
						|
        // FlexRAM is configured as traditional RAM
 | 
						|
        // We need to reconfigure for EEPROM usage
 | 
						|
        kinetis_hsrun_disable();
 | 
						|
        FTFL->FCCOB0 = 0x80;  // PGMPART = Program Partition Command
 | 
						|
        FTFL->FCCOB3 = 0;
 | 
						|
        FTFL->FCCOB4 = EEESPLIT | EEESIZE;
 | 
						|
        FTFL->FCCOB5 = EEPARTITION;
 | 
						|
        __disable_irq();
 | 
						|
        // do_flash_cmd() must execute from RAM.  Luckily the C syntax is simple...
 | 
						|
        (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT));
 | 
						|
        __enable_irq();
 | 
						|
        kinetis_hsrun_enable();
 | 
						|
        status = FTFL->FSTAT;
 | 
						|
        if (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)) {
 | 
						|
            FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL));
 | 
						|
            return;  // error
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // wait for eeprom to become ready (is this really necessary?)
 | 
						|
    while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
 | 
						|
        if (++count > 200000) break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#    define FlexRAM ((volatile uint8_t *)0x14000000)
 | 
						|
 | 
						|
/** \brief eeprom read byte
 | 
						|
 *
 | 
						|
 * FIXME: needs doc
 | 
						|
 */
 | 
						|
uint8_t eeprom_read_byte(const uint8_t *addr) {
 | 
						|
    uint32_t offset = (uint32_t)addr;
 | 
						|
    if (offset >= EEPROM_SIZE) return 0;
 | 
						|
    if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | 
						|
    return FlexRAM[offset];
 | 
						|
}
 | 
						|
 | 
						|
/** \brief eeprom read word
 | 
						|
 *
 | 
						|
 * FIXME: needs doc
 | 
						|
 */
 | 
						|
uint16_t eeprom_read_word(const uint16_t *addr) {
 | 
						|
    uint32_t offset = (uint32_t)addr;
 | 
						|
    if (offset >= EEPROM_SIZE - 1) return 0;
 | 
						|
    if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | 
						|
    return *(uint16_t *)(&FlexRAM[offset]);
 | 
						|
}
 | 
						|
 | 
						|
/** \brief eeprom read dword
 | 
						|
 *
 | 
						|
 * FIXME: needs doc
 | 
						|
 */
 | 
						|
uint32_t eeprom_read_dword(const uint32_t *addr) {
 | 
						|
    uint32_t offset = (uint32_t)addr;
 | 
						|
    if (offset >= EEPROM_SIZE - 3) return 0;
 | 
						|
    if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | 
						|
    return *(uint32_t *)(&FlexRAM[offset]);
 | 
						|
}
 | 
						|
 | 
						|
/** \brief eeprom read block
 | 
						|
 *
 | 
						|
 * FIXME: needs doc
 | 
						|
 */
 | 
						|
void eeprom_read_block(void *buf, const void *addr, uint32_t len) {
 | 
						|
    uint32_t offset = (uint32_t)addr;
 | 
						|
    uint8_t *dest   = (uint8_t *)buf;
 | 
						|
    uint32_t end    = offset + len;
 | 
						|
 | 
						|
    if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | 
						|
    if (end > EEPROM_SIZE) end = EEPROM_SIZE;
 | 
						|
    while (offset < end) {
 | 
						|
        *dest++ = FlexRAM[offset++];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/** \brief eeprom is ready
 | 
						|
 *
 | 
						|
 * FIXME: needs doc
 | 
						|
 */
 | 
						|
int eeprom_is_ready(void) { return (FTFL->FCNFG & FTFL_FCNFG_EEERDY) ? 1 : 0; }
 | 
						|
 | 
						|
/** \brief flexram wait
 | 
						|
 *
 | 
						|
 * FIXME: needs doc
 | 
						|
 */
 | 
						|
static void flexram_wait(void) {
 | 
						|
    while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
 | 
						|
        // TODO: timeout
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/** \brief eeprom_write_byte
 | 
						|
 *
 | 
						|
 * FIXME: needs doc
 | 
						|
 */
 | 
						|
void eeprom_write_byte(uint8_t *addr, uint8_t value) {
 | 
						|
    uint32_t offset = (uint32_t)addr;
 | 
						|
 | 
						|
    if (offset >= EEPROM_SIZE) return;
 | 
						|
    if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | 
						|
    if (FlexRAM[offset] != value) {
 | 
						|
        kinetis_hsrun_disable();
 | 
						|
        uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
        if (stat) FTFL->FSTAT = stat;
 | 
						|
        FlexRAM[offset] = value;
 | 
						|
        flexram_wait();
 | 
						|
        kinetis_hsrun_enable();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/** \brief eeprom write word
 | 
						|
 *
 | 
						|
 * FIXME: needs doc
 | 
						|
 */
 | 
						|
void eeprom_write_word(uint16_t *addr, uint16_t value) {
 | 
						|
    uint32_t offset = (uint32_t)addr;
 | 
						|
 | 
						|
    if (offset >= EEPROM_SIZE - 1) return;
 | 
						|
    if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | 
						|
#    ifdef HANDLE_UNALIGNED_WRITES
 | 
						|
    if ((offset & 1) == 0) {
 | 
						|
#    endif
 | 
						|
        if (*(uint16_t *)(&FlexRAM[offset]) != value) {
 | 
						|
            kinetis_hsrun_disable();
 | 
						|
            uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
            if (stat) FTFL->FSTAT = stat;
 | 
						|
            *(uint16_t *)(&FlexRAM[offset]) = value;
 | 
						|
            flexram_wait();
 | 
						|
            kinetis_hsrun_enable();
 | 
						|
        }
 | 
						|
#    ifdef HANDLE_UNALIGNED_WRITES
 | 
						|
    } else {
 | 
						|
        if (FlexRAM[offset] != value) {
 | 
						|
            kinetis_hsrun_disable();
 | 
						|
            uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
            if (stat) FTFL->FSTAT = stat;
 | 
						|
            FlexRAM[offset] = value;
 | 
						|
            flexram_wait();
 | 
						|
            kinetis_hsrun_enable();
 | 
						|
        }
 | 
						|
        if (FlexRAM[offset + 1] != (value >> 8)) {
 | 
						|
            kinetis_hsrun_disable();
 | 
						|
            uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
            if (stat) FTFL->FSTAT = stat;
 | 
						|
            FlexRAM[offset + 1] = value >> 8;
 | 
						|
            flexram_wait();
 | 
						|
            kinetis_hsrun_enable();
 | 
						|
        }
 | 
						|
    }
 | 
						|
#    endif
 | 
						|
}
 | 
						|
 | 
						|
/** \brief eeprom write dword
 | 
						|
 *
 | 
						|
 * FIXME: needs doc
 | 
						|
 */
 | 
						|
void eeprom_write_dword(uint32_t *addr, uint32_t value) {
 | 
						|
    uint32_t offset = (uint32_t)addr;
 | 
						|
 | 
						|
    if (offset >= EEPROM_SIZE - 3) return;
 | 
						|
    if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | 
						|
#    ifdef HANDLE_UNALIGNED_WRITES
 | 
						|
    switch (offset & 3) {
 | 
						|
        case 0:
 | 
						|
#    endif
 | 
						|
            if (*(uint32_t *)(&FlexRAM[offset]) != value) {
 | 
						|
                kinetis_hsrun_disable();
 | 
						|
                uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
                if (stat) FTFL->FSTAT = stat;
 | 
						|
                *(uint32_t *)(&FlexRAM[offset]) = value;
 | 
						|
                flexram_wait();
 | 
						|
                kinetis_hsrun_enable();
 | 
						|
            }
 | 
						|
            return;
 | 
						|
#    ifdef HANDLE_UNALIGNED_WRITES
 | 
						|
        case 2:
 | 
						|
            if (*(uint16_t *)(&FlexRAM[offset]) != value) {
 | 
						|
                kinetis_hsrun_disable();
 | 
						|
                uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
                if (stat) FTFL->FSTAT = stat;
 | 
						|
                *(uint16_t *)(&FlexRAM[offset]) = value;
 | 
						|
                flexram_wait();
 | 
						|
                kinetis_hsrun_enable();
 | 
						|
            }
 | 
						|
            if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) {
 | 
						|
                kinetis_hsrun_disable();
 | 
						|
                uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
                if (stat) FTFL->FSTAT = stat;
 | 
						|
                *(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16;
 | 
						|
                flexram_wait();
 | 
						|
                kinetis_hsrun_enable();
 | 
						|
            }
 | 
						|
            return;
 | 
						|
        default:
 | 
						|
            if (FlexRAM[offset] != value) {
 | 
						|
                kinetis_hsrun_disable();
 | 
						|
                uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
                if (stat) FTFL->FSTAT = stat;
 | 
						|
                FlexRAM[offset] = value;
 | 
						|
                flexram_wait();
 | 
						|
                kinetis_hsrun_enable();
 | 
						|
            }
 | 
						|
            if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) {
 | 
						|
                kinetis_hsrun_disable();
 | 
						|
                uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
                if (stat) FTFL->FSTAT = stat;
 | 
						|
                *(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8;
 | 
						|
                flexram_wait();
 | 
						|
                kinetis_hsrun_enable();
 | 
						|
            }
 | 
						|
            if (FlexRAM[offset + 3] != (value >> 24)) {
 | 
						|
                kinetis_hsrun_disable();
 | 
						|
                uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
                if (stat) FTFL->FSTAT = stat;
 | 
						|
                FlexRAM[offset + 3] = value >> 24;
 | 
						|
                flexram_wait();
 | 
						|
                kinetis_hsrun_enable();
 | 
						|
            }
 | 
						|
    }
 | 
						|
#    endif
 | 
						|
}
 | 
						|
 | 
						|
/** \brief eeprom write block
 | 
						|
 *
 | 
						|
 * FIXME: needs doc
 | 
						|
 */
 | 
						|
void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
 | 
						|
    uint32_t       offset = (uint32_t)addr;
 | 
						|
    const uint8_t *src    = (const uint8_t *)buf;
 | 
						|
 | 
						|
    if (offset >= EEPROM_SIZE) return;
 | 
						|
    if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | 
						|
    if (len >= EEPROM_SIZE) len = EEPROM_SIZE;
 | 
						|
    if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset;
 | 
						|
    kinetis_hsrun_disable();
 | 
						|
    while (len > 0) {
 | 
						|
        uint32_t lsb = offset & 3;
 | 
						|
        if (lsb == 0 && len >= 4) {
 | 
						|
            // write aligned 32 bits
 | 
						|
            uint32_t val32;
 | 
						|
            val32 = *src++;
 | 
						|
            val32 |= (*src++ << 8);
 | 
						|
            val32 |= (*src++ << 16);
 | 
						|
            val32 |= (*src++ << 24);
 | 
						|
            if (*(uint32_t *)(&FlexRAM[offset]) != val32) {
 | 
						|
                uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
                if (stat) FTFL->FSTAT = stat;
 | 
						|
                *(uint32_t *)(&FlexRAM[offset]) = val32;
 | 
						|
                flexram_wait();
 | 
						|
            }
 | 
						|
            offset += 4;
 | 
						|
            len -= 4;
 | 
						|
        } else if ((lsb == 0 || lsb == 2) && len >= 2) {
 | 
						|
            // write aligned 16 bits
 | 
						|
            uint16_t val16;
 | 
						|
            val16 = *src++;
 | 
						|
            val16 |= (*src++ << 8);
 | 
						|
            if (*(uint16_t *)(&FlexRAM[offset]) != val16) {
 | 
						|
                uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
                if (stat) FTFL->FSTAT = stat;
 | 
						|
                *(uint16_t *)(&FlexRAM[offset]) = val16;
 | 
						|
                flexram_wait();
 | 
						|
            }
 | 
						|
            offset += 2;
 | 
						|
            len -= 2;
 | 
						|
        } else {
 | 
						|
            // write 8 bits
 | 
						|
            uint8_t val8 = *src++;
 | 
						|
            if (FlexRAM[offset] != val8) {
 | 
						|
                uint8_t stat = FTFL->FSTAT & 0x70;
 | 
						|
                if (stat) FTFL->FSTAT = stat;
 | 
						|
                FlexRAM[offset] = val8;
 | 
						|
                flexram_wait();
 | 
						|
            }
 | 
						|
            offset++;
 | 
						|
            len--;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    kinetis_hsrun_enable();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
void do_flash_cmd(volatile uint8_t *fstat)
 | 
						|
{
 | 
						|
    *fstat = 0x80;
 | 
						|
    while ((*fstat & 0x80) == 0) ; // wait
 | 
						|
}
 | 
						|
00000000 <do_flash_cmd>:
 | 
						|
   0:	f06f 037f 	mvn.w	r3, #127	; 0x7f
 | 
						|
   4:	7003      	strb	r3, [r0, #0]
 | 
						|
   6:	7803      	ldrb	r3, [r0, #0]
 | 
						|
   8:	f013 0f80 	tst.w	r3, #128	; 0x80
 | 
						|
   c:	d0fb      	beq.n	6 <do_flash_cmd+0x6>
 | 
						|
   e:	4770      	bx	lr
 | 
						|
*/
 | 
						|
 | 
						|
#elif defined(KL2x) /* chip selection */
 | 
						|
/* Teensy LC (emulated) */
 | 
						|
 | 
						|
#    define SYMVAL(sym) (uint32_t)(((uint8_t *)&(sym)) - ((uint8_t *)0))
 | 
						|
 | 
						|
extern uint32_t __eeprom_workarea_start__;
 | 
						|
extern uint32_t __eeprom_workarea_end__;
 | 
						|
 | 
						|
#    define EEPROM_SIZE 128
 | 
						|
 | 
						|
static uint32_t flashend = 0;
 | 
						|
 | 
						|
void eeprom_initialize(void) {
 | 
						|
    const uint16_t *p = (uint16_t *)SYMVAL(__eeprom_workarea_start__);
 | 
						|
 | 
						|
    do {
 | 
						|
        if (*p++ == 0xFFFF) {
 | 
						|
            flashend = (uint32_t)(p - 2);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    } while (p < (uint16_t *)SYMVAL(__eeprom_workarea_end__));
 | 
						|
    flashend = (uint32_t)(p - 1);
 | 
						|
}
 | 
						|
 | 
						|
uint8_t eeprom_read_byte(const uint8_t *addr) {
 | 
						|
    uint32_t        offset = (uint32_t)addr;
 | 
						|
    const uint16_t *p      = (uint16_t *)SYMVAL(__eeprom_workarea_start__);
 | 
						|
    const uint16_t *end    = (const uint16_t *)((uint32_t)flashend);
 | 
						|
    uint16_t        val;
 | 
						|
    uint8_t         data = 0xFF;
 | 
						|
 | 
						|
    if (!end) {
 | 
						|
        eeprom_initialize();
 | 
						|
        end = (const uint16_t *)((uint32_t)flashend);
 | 
						|
    }
 | 
						|
    if (offset < EEPROM_SIZE) {
 | 
						|
        while (p <= end) {
 | 
						|
            val = *p++;
 | 
						|
            if ((val & 255) == offset) data = val >> 8;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return data;
 | 
						|
}
 | 
						|
 | 
						|
static void flash_write(const uint16_t *code, uint32_t addr, uint32_t data) {
 | 
						|
    // with great power comes great responsibility....
 | 
						|
    uint32_t stat;
 | 
						|
    *(uint32_t *)&(FTFA->FCCOB3) = 0x06000000 | (addr & 0x00FFFFFC);
 | 
						|
    *(uint32_t *)&(FTFA->FCCOB7) = data;
 | 
						|
    __disable_irq();
 | 
						|
    (*((void (*)(volatile uint8_t *))((uint32_t)code | 1)))(&(FTFA->FSTAT));
 | 
						|
    __enable_irq();
 | 
						|
    stat = FTFA->FSTAT & (FTFA_FSTAT_RDCOLERR | FTFA_FSTAT_ACCERR | FTFA_FSTAT_FPVIOL);
 | 
						|
    if (stat) {
 | 
						|
        FTFA->FSTAT = stat;
 | 
						|
    }
 | 
						|
    MCM->PLACR |= MCM_PLACR_CFCC;
 | 
						|
}
 | 
						|
 | 
						|
void eeprom_write_byte(uint8_t *addr, uint8_t data) {
 | 
						|
    uint32_t        offset = (uint32_t)addr;
 | 
						|
    const uint16_t *p, *end = (const uint16_t *)((uint32_t)flashend);
 | 
						|
    uint32_t        i, val, flashaddr;
 | 
						|
    uint16_t        do_flash_cmd[] = {0x2380, 0x7003, 0x7803, 0xb25b, 0x2b00, 0xdafb, 0x4770};
 | 
						|
    uint8_t         buf[EEPROM_SIZE];
 | 
						|
 | 
						|
    if (offset >= EEPROM_SIZE) return;
 | 
						|
    if (!end) {
 | 
						|
        eeprom_initialize();
 | 
						|
        end = (const uint16_t *)((uint32_t)flashend);
 | 
						|
    }
 | 
						|
    if (++end < (uint16_t *)SYMVAL(__eeprom_workarea_end__)) {
 | 
						|
        val       = (data << 8) | offset;
 | 
						|
        flashaddr = (uint32_t)end;
 | 
						|
        flashend  = flashaddr;
 | 
						|
        if ((flashaddr & 2) == 0) {
 | 
						|
            val |= 0xFFFF0000;
 | 
						|
        } else {
 | 
						|
            val <<= 16;
 | 
						|
            val |= 0x0000FFFF;
 | 
						|
        }
 | 
						|
        flash_write(do_flash_cmd, flashaddr, val);
 | 
						|
    } else {
 | 
						|
        for (i = 0; i < EEPROM_SIZE; i++) {
 | 
						|
            buf[i] = 0xFF;
 | 
						|
        }
 | 
						|
        val = 0;
 | 
						|
        for (p = (uint16_t *)SYMVAL(__eeprom_workarea_start__); p < (uint16_t *)SYMVAL(__eeprom_workarea_end__); p++) {
 | 
						|
            val = *p;
 | 
						|
            if ((val & 255) < EEPROM_SIZE) {
 | 
						|
                buf[val & 255] = val >> 8;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        buf[offset] = data;
 | 
						|
        for (flashaddr = (uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_start__); flashaddr < (uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_end__); flashaddr += 1024) {
 | 
						|
            *(uint32_t *)&(FTFA->FCCOB3) = 0x09000000 | flashaddr;
 | 
						|
            __disable_irq();
 | 
						|
            (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFA->FSTAT));
 | 
						|
            __enable_irq();
 | 
						|
            val = FTFA->FSTAT & (FTFA_FSTAT_RDCOLERR | FTFA_FSTAT_ACCERR | FTFA_FSTAT_FPVIOL);
 | 
						|
            ;
 | 
						|
            if (val) FTFA->FSTAT = val;
 | 
						|
            MCM->PLACR |= MCM_PLACR_CFCC;
 | 
						|
        }
 | 
						|
        flashaddr = (uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_start__);
 | 
						|
        for (i = 0; i < EEPROM_SIZE; i++) {
 | 
						|
            if (buf[i] == 0xFF) continue;
 | 
						|
            if ((flashaddr & 2) == 0) {
 | 
						|
                val = (buf[i] << 8) | i;
 | 
						|
            } else {
 | 
						|
                val = val | (buf[i] << 24) | (i << 16);
 | 
						|
                flash_write(do_flash_cmd, flashaddr, val);
 | 
						|
            }
 | 
						|
            flashaddr += 2;
 | 
						|
        }
 | 
						|
        flashend = flashaddr;
 | 
						|
        if ((flashaddr & 2)) {
 | 
						|
            val |= 0xFFFF0000;
 | 
						|
            flash_write(do_flash_cmd, flashaddr, val);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
void do_flash_cmd(volatile uint8_t *fstat)
 | 
						|
{
 | 
						|
        *fstat = 0x80;
 | 
						|
        while ((*fstat & 0x80) == 0) ; // wait
 | 
						|
}
 | 
						|
00000000 <do_flash_cmd>:
 | 
						|
   0:	2380      	movs	r3, #128	; 0x80
 | 
						|
   2:	7003      	strb	r3, [r0, #0]
 | 
						|
   4:	7803      	ldrb	r3, [r0, #0]
 | 
						|
   6:	b25b      	sxtb	r3, r3
 | 
						|
   8:	2b00      	cmp	r3, #0
 | 
						|
   a:	dafb      	bge.n	4 <do_flash_cmd+0x4>
 | 
						|
   c:	4770      	bx	lr
 | 
						|
*/
 | 
						|
 | 
						|
uint16_t eeprom_read_word(const uint16_t *addr) {
 | 
						|
    const uint8_t *p = (const uint8_t *)addr;
 | 
						|
    return eeprom_read_byte(p) | (eeprom_read_byte(p + 1) << 8);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t eeprom_read_dword(const uint32_t *addr) {
 | 
						|
    const uint8_t *p = (const uint8_t *)addr;
 | 
						|
    return eeprom_read_byte(p) | (eeprom_read_byte(p + 1) << 8) | (eeprom_read_byte(p + 2) << 16) | (eeprom_read_byte(p + 3) << 24);
 | 
						|
}
 | 
						|
 | 
						|
void eeprom_read_block(void *buf, const void *addr, uint32_t len) {
 | 
						|
    const uint8_t *p    = (const uint8_t *)addr;
 | 
						|
    uint8_t *      dest = (uint8_t *)buf;
 | 
						|
    while (len--) {
 | 
						|
        *dest++ = eeprom_read_byte(p++);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int eeprom_is_ready(void) { return 1; }
 | 
						|
 | 
						|
void eeprom_write_word(uint16_t *addr, uint16_t value) {
 | 
						|
    uint8_t *p = (uint8_t *)addr;
 | 
						|
    eeprom_write_byte(p++, value);
 | 
						|
    eeprom_write_byte(p, value >> 8);
 | 
						|
}
 | 
						|
 | 
						|
void eeprom_write_dword(uint32_t *addr, uint32_t value) {
 | 
						|
    uint8_t *p = (uint8_t *)addr;
 | 
						|
    eeprom_write_byte(p++, value);
 | 
						|
    eeprom_write_byte(p++, value >> 8);
 | 
						|
    eeprom_write_byte(p++, value >> 16);
 | 
						|
    eeprom_write_byte(p, value >> 24);
 | 
						|
}
 | 
						|
 | 
						|
void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
 | 
						|
    uint8_t *      p   = (uint8_t *)addr;
 | 
						|
    const uint8_t *src = (const uint8_t *)buf;
 | 
						|
    while (len--) {
 | 
						|
        eeprom_write_byte(p++, *src++);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
// No EEPROM supported, so emulate it
 | 
						|
 | 
						|
#    ifndef EEPROM_SIZE
 | 
						|
#        include "eeconfig.h"
 | 
						|
#        define EEPROM_SIZE (((EECONFIG_SIZE + 3) / 4) * 4)  // based off eeconfig's current usage, aligned to 4-byte sizes, to deal with LTO
 | 
						|
#    endif
 | 
						|
__attribute__((aligned(4))) static uint8_t buffer[EEPROM_SIZE];
 | 
						|
 | 
						|
uint8_t eeprom_read_byte(const uint8_t *addr) {
 | 
						|
    uint32_t offset = (uint32_t)addr;
 | 
						|
    return buffer[offset];
 | 
						|
}
 | 
						|
 | 
						|
void eeprom_write_byte(uint8_t *addr, uint8_t value) {
 | 
						|
    uint32_t offset = (uint32_t)addr;
 | 
						|
    buffer[offset]  = value;
 | 
						|
}
 | 
						|
 | 
						|
uint16_t eeprom_read_word(const uint16_t *addr) {
 | 
						|
    const uint8_t *p = (const uint8_t *)addr;
 | 
						|
    return eeprom_read_byte(p) | (eeprom_read_byte(p + 1) << 8);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t eeprom_read_dword(const uint32_t *addr) {
 | 
						|
    const uint8_t *p = (const uint8_t *)addr;
 | 
						|
    return eeprom_read_byte(p) | (eeprom_read_byte(p + 1) << 8) | (eeprom_read_byte(p + 2) << 16) | (eeprom_read_byte(p + 3) << 24);
 | 
						|
}
 | 
						|
 | 
						|
void eeprom_read_block(void *buf, const void *addr, size_t len) {
 | 
						|
    const uint8_t *p    = (const uint8_t *)addr;
 | 
						|
    uint8_t *      dest = (uint8_t *)buf;
 | 
						|
    while (len--) {
 | 
						|
        *dest++ = eeprom_read_byte(p++);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void eeprom_write_word(uint16_t *addr, uint16_t value) {
 | 
						|
    uint8_t *p = (uint8_t *)addr;
 | 
						|
    eeprom_write_byte(p++, value);
 | 
						|
    eeprom_write_byte(p, value >> 8);
 | 
						|
}
 | 
						|
 | 
						|
void eeprom_write_dword(uint32_t *addr, uint32_t value) {
 | 
						|
    uint8_t *p = (uint8_t *)addr;
 | 
						|
    eeprom_write_byte(p++, value);
 | 
						|
    eeprom_write_byte(p++, value >> 8);
 | 
						|
    eeprom_write_byte(p++, value >> 16);
 | 
						|
    eeprom_write_byte(p, value >> 24);
 | 
						|
}
 | 
						|
 | 
						|
void eeprom_write_block(const void *buf, void *addr, size_t len) {
 | 
						|
    uint8_t *      p   = (uint8_t *)addr;
 | 
						|
    const uint8_t *src = (const uint8_t *)buf;
 | 
						|
    while (len--) {
 | 
						|
        eeprom_write_byte(p++, *src++);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif /* chip selection */
 | 
						|
// The update functions just calls write for now, but could probably be optimized
 | 
						|
 | 
						|
void eeprom_update_byte(uint8_t *addr, uint8_t value) { eeprom_write_byte(addr, value); }
 | 
						|
 | 
						|
void eeprom_update_word(uint16_t *addr, uint16_t value) {
 | 
						|
    uint8_t *p = (uint8_t *)addr;
 | 
						|
    eeprom_write_byte(p++, value);
 | 
						|
    eeprom_write_byte(p, value >> 8);
 | 
						|
}
 | 
						|
 | 
						|
void eeprom_update_dword(uint32_t *addr, uint32_t value) {
 | 
						|
    uint8_t *p = (uint8_t *)addr;
 | 
						|
    eeprom_write_byte(p++, value);
 | 
						|
    eeprom_write_byte(p++, value >> 8);
 | 
						|
    eeprom_write_byte(p++, value >> 16);
 | 
						|
    eeprom_write_byte(p, value >> 24);
 | 
						|
}
 | 
						|
 | 
						|
void eeprom_update_block(const void *buf, void *addr, size_t len) {
 | 
						|
    uint8_t *      p   = (uint8_t *)addr;
 | 
						|
    const uint8_t *src = (const uint8_t *)buf;
 | 
						|
    while (len--) {
 | 
						|
        eeprom_write_byte(p++, *src++);
 | 
						|
    }
 | 
						|
}
 |