688 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			688 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This software is experimental and a work in progress.
 | |
|  * Under no circumstances should these files be used in relation to any critical system(s).
 | |
|  * Use of these files is at your own risk.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
 | |
|  * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
 | |
|  * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 | |
|  * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 | |
|  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 | |
|  * DEALINGS IN THE SOFTWARE.
 | |
|  *
 | |
|  * This files are free to use from http://engsta.com/stm32-flash-memory-eeprom-emulator/ by
 | |
|  * Artur F.
 | |
|  *
 | |
|  * Modifications for QMK and STM32F303 by Yiancar
 | |
|  * Modifications to add flash wear leveling by Ilya Zhuravlev
 | |
|  * Modifications to increase flash density by Don Kjer
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdbool.h>
 | |
| #include "util.h"
 | |
| #include "debug.h"
 | |
| #include "eeprom_stm32.h"
 | |
| #include "flash_stm32.h"
 | |
| 
 | |
| /*
 | |
|  * We emulate eeprom by writing a snapshot compacted view of eeprom contents,
 | |
|  * followed by a write log of any change since that snapshot:
 | |
|  *
 | |
|  * === SIMULATED EEPROM CONTENTS ===
 | |
|  *
 | |
|  * ┌─ Compacted ┬ Write Log ─┐
 | |
|  * │............│[BYTE][BYTE]│
 | |
|  * │FFFF....FFFF│[WRD0][WRD1]│
 | |
|  * │FFFFFFFFFFFF│[WORD][NEXT]│
 | |
|  * │....FFFFFFFF│[BYTE][WRD0]│
 | |
|  * ├────────────┼────────────┤
 | |
|  * └──PAGE_BASE │            │
 | |
|  *    PAGE_LAST─┴─WRITE_BASE │
 | |
|  *                WRITE_LAST ┘
 | |
|  *
 | |
|  * Compacted contents are the 1's complement of the actual EEPROM contents.
 | |
|  * e.g. An 'FFFF' represents a '0000' value.
 | |
|  *
 | |
|  * The size of the 'compacted' area is equal to the size of the 'emulated' eeprom.
 | |
|  * The size of the compacted-area and write log are configurable, and the combined
 | |
|  * size of Compacted + WriteLog is a multiple FEE_PAGE_SIZE, which is MCU dependent.
 | |
|  * Simulated Eeprom contents are located at the end of available flash space.
 | |
|  *
 | |
|  * The following configuration defines can be set:
 | |
|  *
 | |
|  * FEE_PAGE_COUNT   # Total number of pages to use for eeprom simulation (Compact + Write log)
 | |
|  * FEE_DENSITY_BYTES   # Size of simulated eeprom. (Defaults to half the space allocated by FEE_PAGE_COUNT)
 | |
|  * NOTE: The current implementation does not include page swapping,
 | |
|  * and FEE_DENSITY_BYTES will consume that amount of RAM as a cached view of actual EEPROM contents.
 | |
|  *
 | |
|  * The maximum size of FEE_DENSITY_BYTES is currently 16384. The write log size equals
 | |
|  * FEE_PAGE_COUNT * FEE_PAGE_SIZE - FEE_DENSITY_BYTES.
 | |
|  * The larger the write log, the less frequently the compacted area needs to be rewritten.
 | |
|  *
 | |
|  *
 | |
|  * *** General Algorithm ***
 | |
|  *
 | |
|  * During initialization:
 | |
|  * The contents of the Compacted-flash area are loaded and the 1's complement value
 | |
|  * is cached into memory (e.g. 0xFFFF in Flash represents 0x0000 in cache).
 | |
|  * Write log entries are processed until a 0xFFFF is reached.
 | |
|  * Each log entry updates a byte or word in the cache.
 | |
|  *
 | |
|  * During reads:
 | |
|  * EEPROM contents are given back directly from the cache in memory.
 | |
|  *
 | |
|  * During writes:
 | |
|  * The contents of the cache is updated first.
 | |
|  * If the Compacted-flash area corresponding to the write address is unprogrammed, the 1's complement of the value is written directly into Compacted-flash
 | |
|  * Otherwise:
 | |
|  * If the write log is full, erase both the Compacted-flash area and the Write log, then write cached contents to the Compacted-flash area.
 | |
|  * Otherwise a Write log entry is constructed and appended to the next free position in the Write log.
 | |
|  *
 | |
|  *
 | |
|  * *** Write Log Structure ***
 | |
|  *
 | |
|  * Write log entries allow for optimized byte writes to addresses below 128. Writing 0 or 1 words are also optimized when word-aligned.
 | |
|  *
 | |
|  * === WRITE LOG ENTRY FORMATS ===
 | |
|  *
 | |
|  * ╔═══ Byte-Entry ══╗
 | |
|  * ║0XXXXXXX║YYYYYYYY║
 | |
|  * ║ └──┬──┘║└──┬───┘║
 | |
|  * ║ Address║ Value  ║
 | |
|  * ╚════════╩════════╝
 | |
|  * 0 <= Address < 0x80 (128)
 | |
|  *
 | |
|  * ╔ Word-Encoded 0 ╗
 | |
|  * ║100XXXXXXXXXXXXX║
 | |
|  * ║  │└─────┬─────┘║
 | |
|  * ║  │Address >> 1 ║
 | |
|  * ║  └── Value: 0  ║
 | |
|  * ╚════════════════╝
 | |
|  * 0 <= Address <= 0x3FFE (16382)
 | |
|  *
 | |
|  * ╔ Word-Encoded 1 ╗
 | |
|  * ║101XXXXXXXXXXXXX║
 | |
|  * ║  │└─────┬─────┘║
 | |
|  * ║  │Address >> 1 ║
 | |
|  * ║  └── Value: 1  ║
 | |
|  * ╚════════════════╝
 | |
|  * 0 <= Address <= 0x3FFE (16382)
 | |
|  *
 | |
|  * ╔═══ Reserved ═══╗
 | |
|  * ║110XXXXXXXXXXXXX║
 | |
|  * ╚════════════════╝
 | |
|  *
 | |
|  * ╔═══════════ Word-Next ═══════════╗
 | |
|  * ║111XXXXXXXXXXXXX║YYYYYYYYYYYYYYYY║
 | |
|  * ║   └─────┬─────┘║└───────┬──────┘║
 | |
|  * ║(Address-128)>>1║     ~Value     ║
 | |
|  * ╚════════════════╩════════════════╝
 | |
|  * (  0 <= Address <  0x0080 (128): Reserved)
 | |
|  * 0x80 <= Address <= 0x3FFE (16382)
 | |
|  *
 | |
|  * Write Log entry ranges:
 | |
|  * 0x0000 ... 0x7FFF - Byte-Entry;     address is (Entry & 0x7F00) >> 4; value is (Entry & 0xFF)
 | |
|  * 0x8000 ... 0x9FFF - Word-Encoded 0; address is (Entry & 0x1FFF) << 1; value is 0
 | |
|  * 0xA000 ... 0xBFFF - Word-Encoded 1; address is (Entry & 0x1FFF) << 1; value is 1
 | |
|  * 0xC000 ... 0xDFFF - Reserved
 | |
|  * 0xE000 ... 0xFFBF - Word-Next;      address is (Entry & 0x1FFF) << 1 + 0x80; value is ~(Next_Entry)
 | |
|  * 0xFFC0 ... 0xFFFE - Reserved
 | |
|  * 0xFFFF            - Unprogrammed
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "eeprom_stm32_defs.h"
 | |
| #if !defined(FEE_PAGE_SIZE) || !defined(FEE_PAGE_COUNT) || !defined(FEE_MCU_FLASH_SIZE) || !defined(FEE_PAGE_BASE_ADDRESS)
 | |
| #    error "not implemented."
 | |
| #endif
 | |
| 
 | |
| /* These bits are used for optimizing encoding of bytes, 0 and 1 */
 | |
| #define FEE_WORD_ENCODING 0x8000
 | |
| #define FEE_VALUE_NEXT 0x6000
 | |
| #define FEE_VALUE_RESERVED 0x4000
 | |
| #define FEE_VALUE_ENCODED 0x2000
 | |
| #define FEE_BYTE_RANGE 0x80
 | |
| 
 | |
| /* Addressable range 16KByte: 0 <-> (0x1FFF << 1) */
 | |
| #define FEE_ADDRESS_MAX_SIZE 0x4000
 | |
| 
 | |
| /* Flash word value after erase */
 | |
| #define FEE_EMPTY_WORD ((uint16_t)0xFFFF)
 | |
| 
 | |
| /* Size of combined compacted eeprom and write log pages */
 | |
| #define FEE_DENSITY_MAX_SIZE (FEE_PAGE_COUNT * FEE_PAGE_SIZE)
 | |
| 
 | |
| #ifndef FEE_MCU_FLASH_SIZE_IGNORE_CHECK /* *TODO: Get rid of this check */
 | |
| #    if FEE_DENSITY_MAX_SIZE > (FEE_MCU_FLASH_SIZE * 1024)
 | |
| #        pragma message STR(FEE_DENSITY_MAX_SIZE) " > " STR(FEE_MCU_FLASH_SIZE * 1024)
 | |
| #        error emulated eeprom: FEE_DENSITY_MAX_SIZE is greater than available flash size
 | |
| #    endif
 | |
| #endif
 | |
| 
 | |
| /* Size of emulated eeprom */
 | |
| #ifdef FEE_DENSITY_BYTES
 | |
| #    if (FEE_DENSITY_BYTES > FEE_DENSITY_MAX_SIZE)
 | |
| #        pragma message STR(FEE_DENSITY_BYTES) " > " STR(FEE_DENSITY_MAX_SIZE)
 | |
| #        error emulated eeprom: FEE_DENSITY_BYTES exceeds FEE_DENSITY_MAX_SIZE
 | |
| #    endif
 | |
| #    if (FEE_DENSITY_BYTES == FEE_DENSITY_MAX_SIZE)
 | |
| #        pragma message STR(FEE_DENSITY_BYTES) " == " STR(FEE_DENSITY_MAX_SIZE)
 | |
| #        warning emulated eeprom: FEE_DENSITY_BYTES leaves no room for a write log.  This will greatly increase the flash wear rate!
 | |
| #    endif
 | |
| #    if FEE_DENSITY_BYTES > FEE_ADDRESS_MAX_SIZE
 | |
| #        pragma message STR(FEE_DENSITY_BYTES) " > " STR(FEE_ADDRESS_MAX_SIZE)
 | |
| #        error emulated eeprom: FEE_DENSITY_BYTES is greater than FEE_ADDRESS_MAX_SIZE allows
 | |
| #    endif
 | |
| #    if ((FEE_DENSITY_BYTES) % 2) == 1
 | |
| #        error emulated eeprom: FEE_DENSITY_BYTES must be even
 | |
| #    endif
 | |
| #else
 | |
| /* Default to half of allocated space used for emulated eeprom, half for write log */
 | |
| #    define FEE_DENSITY_BYTES (FEE_PAGE_COUNT * FEE_PAGE_SIZE / 2)
 | |
| #endif
 | |
| 
 | |
| /* Size of write log */
 | |
| #ifdef FEE_WRITE_LOG_BYTES
 | |
| #    if ((FEE_DENSITY_BYTES + FEE_WRITE_LOG_BYTES) > FEE_DENSITY_MAX_SIZE)
 | |
| #        pragma message STR(FEE_DENSITY_BYTES) " + " STR(FEE_WRITE_LOG_BYTES) " > " STR(FEE_DENSITY_MAX_SIZE)
 | |
| #        error emulated eeprom: FEE_WRITE_LOG_BYTES exceeds remaining FEE_DENSITY_MAX_SIZE
 | |
| #    endif
 | |
| #    if ((FEE_WRITE_LOG_BYTES) % 2) == 1
 | |
| #        error emulated eeprom: FEE_WRITE_LOG_BYTES must be even
 | |
| #    endif
 | |
| #else
 | |
| /* Default to use all remaining space */
 | |
| #    define FEE_WRITE_LOG_BYTES (FEE_PAGE_COUNT * FEE_PAGE_SIZE - FEE_DENSITY_BYTES)
 | |
| #endif
 | |
| 
 | |
| /* Start of the emulated eeprom compacted flash area */
 | |
| #define FEE_COMPACTED_BASE_ADDRESS FEE_PAGE_BASE_ADDRESS
 | |
| /* End of the emulated eeprom compacted flash area */
 | |
| #define FEE_COMPACTED_LAST_ADDRESS (FEE_COMPACTED_BASE_ADDRESS + FEE_DENSITY_BYTES)
 | |
| /* Start of the emulated eeprom write log */
 | |
| #define FEE_WRITE_LOG_BASE_ADDRESS FEE_COMPACTED_LAST_ADDRESS
 | |
| /* End of the emulated eeprom write log */
 | |
| #define FEE_WRITE_LOG_LAST_ADDRESS (FEE_WRITE_LOG_BASE_ADDRESS + FEE_WRITE_LOG_BYTES)
 | |
| 
 | |
| #if defined(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) && (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR >= FEE_DENSITY_BYTES)
 | |
| #    error emulated eeprom: DYNAMIC_KEYMAP_EEPROM_MAX_ADDR is greater than the FEE_DENSITY_BYTES available
 | |
| #endif
 | |
| 
 | |
| /* In-memory contents of emulated eeprom for faster access */
 | |
| /* *TODO: Implement page swapping */
 | |
| static uint16_t WordBuf[FEE_DENSITY_BYTES / 2];
 | |
| static uint8_t *DataBuf = (uint8_t *)WordBuf;
 | |
| 
 | |
| /* Pointer to the first available slot within the write log */
 | |
| static uint16_t *empty_slot;
 | |
| 
 | |
| // #define DEBUG_EEPROM_OUTPUT
 | |
| 
 | |
| /*
 | |
|  * Debug print utils
 | |
|  */
 | |
| 
 | |
| #if defined(DEBUG_EEPROM_OUTPUT)
 | |
| 
 | |
| #    define debug_eeprom debug_enable
 | |
| #    define eeprom_println(s) println(s)
 | |
| #    define eeprom_printf(fmt, ...) xprintf(fmt, ##__VA_ARGS__);
 | |
| 
 | |
| #else /* NO_DEBUG */
 | |
| 
 | |
| #    define debug_eeprom false
 | |
| #    define eeprom_println(s)
 | |
| #    define eeprom_printf(fmt, ...)
 | |
| 
 | |
| #endif /* NO_DEBUG */
 | |
| 
 | |
| void print_eeprom(void) {
 | |
| #ifndef NO_DEBUG
 | |
|     int empty_rows = 0;
 | |
|     for (uint16_t i = 0; i < FEE_DENSITY_BYTES; i++) {
 | |
|         if (i % 16 == 0) {
 | |
|             if (i >= FEE_DENSITY_BYTES - 16) {
 | |
|                 /* Make sure we display the last row */
 | |
|                 empty_rows = 0;
 | |
|             }
 | |
|             /* Check if this row is uninitialized */
 | |
|             ++empty_rows;
 | |
|             for (uint16_t j = 0; j < 16; j++) {
 | |
|                 if (DataBuf[i + j]) {
 | |
|                     empty_rows = 0;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (empty_rows > 1) {
 | |
|                 /* Repeat empty row */
 | |
|                 if (empty_rows == 2) {
 | |
|                     /* Only display the first repeat empty row */
 | |
|                     println("*");
 | |
|                 }
 | |
|                 i += 15;
 | |
|                 continue;
 | |
|             }
 | |
|             xprintf("%04x", i);
 | |
|         }
 | |
|         if (i % 8 == 0) print(" ");
 | |
| 
 | |
|         xprintf(" %02x", DataBuf[i]);
 | |
|         if ((i + 1) % 16 == 0) {
 | |
|             println("");
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| uint16_t EEPROM_Init(void) {
 | |
|     /* Load emulated eeprom contents from compacted flash into memory */
 | |
|     uint16_t *src  = (uint16_t *)FEE_COMPACTED_BASE_ADDRESS;
 | |
|     uint16_t *dest = (uint16_t *)DataBuf;
 | |
|     for (; src < (uint16_t *)FEE_COMPACTED_LAST_ADDRESS; ++src, ++dest) {
 | |
|         *dest = ~*src;
 | |
|     }
 | |
| 
 | |
|     if (debug_eeprom) {
 | |
|         println("EEPROM_Init Compacted Pages:");
 | |
|         print_eeprom();
 | |
|         println("EEPROM_Init Write Log:");
 | |
|     }
 | |
| 
 | |
|     /* Replay write log */
 | |
|     uint16_t *log_addr;
 | |
|     for (log_addr = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS; log_addr < (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS; ++log_addr) {
 | |
|         uint16_t address = *log_addr;
 | |
|         if (address == FEE_EMPTY_WORD) {
 | |
|             break;
 | |
|         }
 | |
|         /* Check for lowest 128-bytes optimization */
 | |
|         if (!(address & FEE_WORD_ENCODING)) {
 | |
|             uint8_t bvalue = (uint8_t)address;
 | |
|             address >>= 8;
 | |
|             DataBuf[address] = bvalue;
 | |
|             eeprom_printf("DataBuf[0x%02x] = 0x%02x;\n", address, bvalue);
 | |
|         } else {
 | |
|             uint16_t wvalue;
 | |
|             /* Check if value is in next word */
 | |
|             if ((address & FEE_VALUE_NEXT) == FEE_VALUE_NEXT) {
 | |
|                 /* Read value from next word */
 | |
|                 if (++log_addr >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) {
 | |
|                     break;
 | |
|                 }
 | |
|                 wvalue = ~*log_addr;
 | |
|                 if (!wvalue) {
 | |
|                     eeprom_printf("Incomplete write at log_addr: 0x%04x;\n", (uint32_t)log_addr);
 | |
|                     /* Possibly incomplete write.  Ignore and continue */
 | |
|                     continue;
 | |
|                 }
 | |
|                 address &= 0x1FFF;
 | |
|                 address <<= 1;
 | |
|                 /* Writes to addresses less than 128 are byte log entries */
 | |
|                 address += FEE_BYTE_RANGE;
 | |
|             } else {
 | |
|                 /* Reserved for future use */
 | |
|                 if (address & FEE_VALUE_RESERVED) {
 | |
|                     eeprom_printf("Reserved encoded value at log_addr: 0x%04x;\n", (uint32_t)log_addr);
 | |
|                     continue;
 | |
|                 }
 | |
|                 /* Optimization for 0 or 1 values. */
 | |
|                 wvalue = (address & FEE_VALUE_ENCODED) >> 13;
 | |
|                 address &= 0x1FFF;
 | |
|                 address <<= 1;
 | |
|             }
 | |
|             if (address < FEE_DENSITY_BYTES) {
 | |
|                 eeprom_printf("DataBuf[0x%04x] = 0x%04x;\n", address, wvalue);
 | |
|                 *(uint16_t *)(&DataBuf[address]) = wvalue;
 | |
|             } else {
 | |
|                 eeprom_printf("DataBuf[0x%04x] cannot be set to 0x%04x [BAD ADDRESS]\n", address, wvalue);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     empty_slot = log_addr;
 | |
| 
 | |
|     if (debug_eeprom) {
 | |
|         println("EEPROM_Init Final DataBuf:");
 | |
|         print_eeprom();
 | |
|     }
 | |
| 
 | |
|     return FEE_DENSITY_BYTES;
 | |
| }
 | |
| 
 | |
| /* Clear flash contents (doesn't touch in-memory DataBuf) */
 | |
| static void eeprom_clear(void) {
 | |
|     FLASH_Unlock();
 | |
| 
 | |
|     for (uint16_t page_num = 0; page_num < FEE_PAGE_COUNT; ++page_num) {
 | |
|         eeprom_printf("FLASH_ErasePage(0x%04x)\n", (uint32_t)(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE)));
 | |
|         FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE));
 | |
|     }
 | |
| 
 | |
|     FLASH_Lock();
 | |
| 
 | |
|     empty_slot = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS;
 | |
|     eeprom_printf("eeprom_clear empty_slot: 0x%08x\n", (uint32_t)empty_slot);
 | |
| }
 | |
| 
 | |
| /* Erase emulated eeprom */
 | |
| void EEPROM_Erase(void) {
 | |
|     eeprom_println("EEPROM_Erase");
 | |
|     /* Erase compacted pages and write log */
 | |
|     eeprom_clear();
 | |
|     /* re-initialize to reset DataBuf */
 | |
|     EEPROM_Init();
 | |
| }
 | |
| 
 | |
| /* Compact write log */
 | |
| static uint8_t eeprom_compact(void) {
 | |
|     /* Erase compacted pages and write log */
 | |
|     eeprom_clear();
 | |
| 
 | |
|     FLASH_Unlock();
 | |
| 
 | |
|     FLASH_Status final_status = FLASH_COMPLETE;
 | |
| 
 | |
|     /* Write emulated eeprom contents from memory to compacted flash */
 | |
|     uint16_t *src  = (uint16_t *)DataBuf;
 | |
|     uintptr_t dest = FEE_COMPACTED_BASE_ADDRESS;
 | |
|     uint16_t  value;
 | |
|     for (; dest < FEE_COMPACTED_LAST_ADDRESS; ++src, dest += 2) {
 | |
|         value = *src;
 | |
|         if (value) {
 | |
|             eeprom_printf("FLASH_ProgramHalfWord(0x%04x, 0x%04x)\n", (uint32_t)dest, ~value);
 | |
|             FLASH_Status status = FLASH_ProgramHalfWord(dest, ~value);
 | |
|             if (status != FLASH_COMPLETE) final_status = status;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     FLASH_Lock();
 | |
| 
 | |
|     if (debug_eeprom) {
 | |
|         println("eeprom_compacted:");
 | |
|         print_eeprom();
 | |
|     }
 | |
| 
 | |
|     return final_status;
 | |
| }
 | |
| 
 | |
| static uint8_t eeprom_write_direct_entry(uint16_t Address) {
 | |
|     /* Check if we can just write this directly to the compacted flash area */
 | |
|     uintptr_t directAddress = FEE_COMPACTED_BASE_ADDRESS + (Address & 0xFFFE);
 | |
|     if (*(uint16_t *)directAddress == FEE_EMPTY_WORD) {
 | |
|         /* Write the value directly to the compacted area without a log entry */
 | |
|         uint16_t value = ~*(uint16_t *)(&DataBuf[Address & 0xFFFE]);
 | |
|         /* Early exit if a write isn't needed */
 | |
|         if (value == FEE_EMPTY_WORD) return FLASH_COMPLETE;
 | |
| 
 | |
|         FLASH_Unlock();
 | |
| 
 | |
|         eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x) [DIRECT]\n", (uint32_t)directAddress, value);
 | |
|         FLASH_Status status = FLASH_ProgramHalfWord(directAddress, value);
 | |
| 
 | |
|         FLASH_Lock();
 | |
|         return status;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static uint8_t eeprom_write_log_word_entry(uint16_t Address) {
 | |
|     FLASH_Status final_status = FLASH_COMPLETE;
 | |
| 
 | |
|     uint16_t value = *(uint16_t *)(&DataBuf[Address]);
 | |
|     eeprom_printf("eeprom_write_log_word_entry(0x%04x): 0x%04x\n", Address, value);
 | |
| 
 | |
|     /* MSB signifies the lowest 128-byte optimization is not in effect */
 | |
|     uint16_t encoding = FEE_WORD_ENCODING;
 | |
|     uint8_t  entry_size;
 | |
|     if (value <= 1) {
 | |
|         encoding |= value << 13;
 | |
|         entry_size = 2;
 | |
|     } else {
 | |
|         encoding |= FEE_VALUE_NEXT;
 | |
|         entry_size = 4;
 | |
|         /* Writes to addresses less than 128 are byte log entries */
 | |
|         Address -= FEE_BYTE_RANGE;
 | |
|     }
 | |
| 
 | |
|     /* if we can't find an empty spot, we must compact emulated eeprom */
 | |
|     if (empty_slot > (uint16_t *)(FEE_WRITE_LOG_LAST_ADDRESS - entry_size)) {
 | |
|         /* compact the write log into the compacted flash area */
 | |
|         return eeprom_compact();
 | |
|     }
 | |
| 
 | |
|     /* Word log writes should be word-aligned.  Take back a bit */
 | |
|     Address >>= 1;
 | |
|     Address |= encoding;
 | |
| 
 | |
|     /* ok we found a place let's write our data */
 | |
|     FLASH_Unlock();
 | |
| 
 | |
|     /* address */
 | |
|     eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, Address);
 | |
|     final_status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, Address);
 | |
| 
 | |
|     /* value */
 | |
|     if (encoding == (FEE_WORD_ENCODING | FEE_VALUE_NEXT)) {
 | |
|         eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, ~value);
 | |
|         FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, ~value);
 | |
|         if (status != FLASH_COMPLETE) final_status = status;
 | |
|     }
 | |
| 
 | |
|     FLASH_Lock();
 | |
| 
 | |
|     return final_status;
 | |
| }
 | |
| 
 | |
| static uint8_t eeprom_write_log_byte_entry(uint16_t Address) {
 | |
|     eeprom_printf("eeprom_write_log_byte_entry(0x%04x): 0x%02x\n", Address, DataBuf[Address]);
 | |
| 
 | |
|     /* if couldn't find an empty spot, we must compact emulated eeprom */
 | |
|     if (empty_slot >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) {
 | |
|         /* compact the write log into the compacted flash area */
 | |
|         return eeprom_compact();
 | |
|     }
 | |
| 
 | |
|     /* ok we found a place let's write our data */
 | |
|     FLASH_Unlock();
 | |
| 
 | |
|     /* Pack address and value into the same word */
 | |
|     uint16_t value = (Address << 8) | DataBuf[Address];
 | |
| 
 | |
|     /* write to flash */
 | |
|     eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, value);
 | |
|     FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, value);
 | |
| 
 | |
|     FLASH_Lock();
 | |
| 
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| uint8_t EEPROM_WriteDataByte(uint16_t Address, uint8_t DataByte) {
 | |
|     /* if the address is out-of-bounds, do nothing */
 | |
|     if (Address >= FEE_DENSITY_BYTES) {
 | |
|         eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [BAD ADDRESS]\n", Address, DataByte);
 | |
|         return FLASH_BAD_ADDRESS;
 | |
|     }
 | |
| 
 | |
|     /* if the value is the same, don't bother writing it */
 | |
|     if (DataBuf[Address] == DataByte) {
 | |
|         eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [SKIP SAME]\n", Address, DataByte);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* keep DataBuf cache in sync */
 | |
|     DataBuf[Address] = DataByte;
 | |
|     eeprom_printf("EEPROM_WriteDataByte DataBuf[0x%04x] = 0x%02x\n", Address, DataBuf[Address]);
 | |
| 
 | |
|     /* perform the write into flash memory */
 | |
|     /* First, attempt to write directly into the compacted flash area */
 | |
|     FLASH_Status status = eeprom_write_direct_entry(Address);
 | |
|     if (!status) {
 | |
|         /* Otherwise append to the write log */
 | |
|         if (Address < FEE_BYTE_RANGE) {
 | |
|             status = eeprom_write_log_byte_entry(Address);
 | |
|         } else {
 | |
|             status = eeprom_write_log_word_entry(Address & 0xFFFE);
 | |
|         }
 | |
|     }
 | |
|     if (status != 0 && status != FLASH_COMPLETE) {
 | |
|         eeprom_printf("EEPROM_WriteDataByte [STATUS == %d]\n", status);
 | |
|     }
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| uint8_t EEPROM_WriteDataWord(uint16_t Address, uint16_t DataWord) {
 | |
|     /* if the address is out-of-bounds, do nothing */
 | |
|     if (Address >= FEE_DENSITY_BYTES) {
 | |
|         eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [BAD ADDRESS]\n", Address, DataWord);
 | |
|         return FLASH_BAD_ADDRESS;
 | |
|     }
 | |
| 
 | |
|     /* Check for word alignment */
 | |
|     FLASH_Status final_status = FLASH_COMPLETE;
 | |
|     if (Address % 2) {
 | |
|         final_status        = EEPROM_WriteDataByte(Address, DataWord);
 | |
|         FLASH_Status status = EEPROM_WriteDataByte(Address + 1, DataWord >> 8);
 | |
|         if (status != FLASH_COMPLETE) final_status = status;
 | |
|         if (final_status != 0 && final_status != FLASH_COMPLETE) {
 | |
|             eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status);
 | |
|         }
 | |
|         return final_status;
 | |
|     }
 | |
| 
 | |
|     /* if the value is the same, don't bother writing it */
 | |
|     uint16_t oldValue = *(uint16_t *)(&DataBuf[Address]);
 | |
|     if (oldValue == DataWord) {
 | |
|         eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [SKIP SAME]\n", Address, DataWord);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* keep DataBuf cache in sync */
 | |
|     *(uint16_t *)(&DataBuf[Address]) = DataWord;
 | |
|     eeprom_printf("EEPROM_WriteDataWord DataBuf[0x%04x] = 0x%04x\n", Address, *(uint16_t *)(&DataBuf[Address]));
 | |
| 
 | |
|     /* perform the write into flash memory */
 | |
|     /* First, attempt to write directly into the compacted flash area */
 | |
|     final_status = eeprom_write_direct_entry(Address);
 | |
|     if (!final_status) {
 | |
|         /* Otherwise append to the write log */
 | |
|         /* Check if we need to fall back to byte write */
 | |
|         if (Address < FEE_BYTE_RANGE) {
 | |
|             final_status = FLASH_COMPLETE;
 | |
|             /* Only write a byte if it has changed */
 | |
|             if ((uint8_t)oldValue != (uint8_t)DataWord) {
 | |
|                 final_status = eeprom_write_log_byte_entry(Address);
 | |
|             }
 | |
|             FLASH_Status status = FLASH_COMPLETE;
 | |
|             /* Only write a byte if it has changed */
 | |
|             if ((oldValue >> 8) != (DataWord >> 8)) {
 | |
|                 status = eeprom_write_log_byte_entry(Address + 1);
 | |
|             }
 | |
|             if (status != FLASH_COMPLETE) final_status = status;
 | |
|         } else {
 | |
|             final_status = eeprom_write_log_word_entry(Address);
 | |
|         }
 | |
|     }
 | |
|     if (final_status != 0 && final_status != FLASH_COMPLETE) {
 | |
|         eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status);
 | |
|     }
 | |
|     return final_status;
 | |
| }
 | |
| 
 | |
| uint8_t EEPROM_ReadDataByte(uint16_t Address) {
 | |
|     uint8_t DataByte = 0xFF;
 | |
| 
 | |
|     if (Address < FEE_DENSITY_BYTES) {
 | |
|         DataByte = DataBuf[Address];
 | |
|     }
 | |
| 
 | |
|     eeprom_printf("EEPROM_ReadDataByte(0x%04x): 0x%02x\n", Address, DataByte);
 | |
| 
 | |
|     return DataByte;
 | |
| }
 | |
| 
 | |
| uint16_t EEPROM_ReadDataWord(uint16_t Address) {
 | |
|     uint16_t DataWord = 0xFFFF;
 | |
| 
 | |
|     if (Address < FEE_DENSITY_BYTES - 1) {
 | |
|         /* Check word alignment */
 | |
|         if (Address % 2) {
 | |
|             DataWord = DataBuf[Address] | (DataBuf[Address + 1] << 8);
 | |
|         } else {
 | |
|             DataWord = *(uint16_t *)(&DataBuf[Address]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     eeprom_printf("EEPROM_ReadDataWord(0x%04x): 0x%04x\n", Address, DataWord);
 | |
| 
 | |
|     return DataWord;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *  Bind to eeprom_driver.c
 | |
|  *******************************************************************************/
 | |
| void eeprom_driver_init(void) { EEPROM_Init(); }
 | |
| 
 | |
| void eeprom_driver_erase(void) { EEPROM_Erase(); }
 | |
| 
 | |
| void eeprom_read_block(void *buf, const void *addr, size_t len) {
 | |
|     const uint8_t *src  = (const uint8_t *)addr;
 | |
|     uint8_t *      dest = (uint8_t *)buf;
 | |
| 
 | |
|     /* Check word alignment */
 | |
|     if (len && (uintptr_t)src % 2) {
 | |
|         /* Read the unaligned first byte */
 | |
|         *dest++ = EEPROM_ReadDataByte((const uintptr_t)src++);
 | |
|         --len;
 | |
|     }
 | |
| 
 | |
|     uint16_t value;
 | |
|     bool     aligned = ((uintptr_t)dest % 2 == 0);
 | |
|     while (len > 1) {
 | |
|         value = EEPROM_ReadDataWord((const uintptr_t)((uint16_t *)src));
 | |
|         if (aligned) {
 | |
|             *(uint16_t *)dest = value;
 | |
|             dest += 2;
 | |
|         } else {
 | |
|             *dest++ = value;
 | |
|             *dest++ = value >> 8;
 | |
|         }
 | |
|         src += 2;
 | |
|         len -= 2;
 | |
|     }
 | |
|     if (len) {
 | |
|         *dest = EEPROM_ReadDataByte((const uintptr_t)src);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void eeprom_write_block(const void *buf, void *addr, size_t len) {
 | |
|     uint8_t *      dest = (uint8_t *)addr;
 | |
|     const uint8_t *src  = (const uint8_t *)buf;
 | |
| 
 | |
|     /* Check word alignment */
 | |
|     if (len && (uintptr_t)dest % 2) {
 | |
|         /* Write the unaligned first byte */
 | |
|         EEPROM_WriteDataByte((uintptr_t)dest++, *src++);
 | |
|         --len;
 | |
|     }
 | |
| 
 | |
|     uint16_t value;
 | |
|     bool     aligned = ((uintptr_t)src % 2 == 0);
 | |
|     while (len > 1) {
 | |
|         if (aligned) {
 | |
|             value = *(uint16_t *)src;
 | |
|         } else {
 | |
|             value = *(uint8_t *)src | (*(uint8_t *)(src + 1) << 8);
 | |
|         }
 | |
|         EEPROM_WriteDataWord((uintptr_t)((uint16_t *)dest), value);
 | |
|         dest += 2;
 | |
|         src += 2;
 | |
|         len -= 2;
 | |
|     }
 | |
| 
 | |
|     if (len) {
 | |
|         EEPROM_WriteDataByte((uintptr_t)dest, *src);
 | |
|     }
 | |
| }
 |