* Generate api docs from source code * Add a bunch of doxygen comments * more doxygen comments * Add the in-progress api docs * script to generate docs from travis * Add doc generation to the travis job * make travis_docs.sh commit the work it does * make sure the docs script exits cleanly
		
			
				
	
	
		
			633 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			633 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "ch.h"
 | |
| #include "hal.h"
 | |
| 
 | |
| #include "eeconfig.h"
 | |
| 
 | |
| /*************************************/
 | |
| /*          Hardware backend         */
 | |
| /*                                   */
 | |
| /*    Code from PJRC/Teensyduino     */
 | |
| /*************************************/
 | |
| 
 | |
| /* Teensyduino Core Library
 | |
|  * http://www.pjrc.com/teensy/
 | |
|  * Copyright (c) 2013 PJRC.COM, LLC.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining
 | |
|  * a copy of this software and associated documentation files (the
 | |
|  * "Software"), to deal in the Software without restriction, including
 | |
|  * without limitation the rights to use, copy, modify, merge, publish,
 | |
|  * distribute, sublicense, and/or sell copies of the Software, and to
 | |
|  * permit persons to whom the Software is furnished to do so, subject to
 | |
|  * the following conditions:
 | |
|  *
 | |
|  * 1. The above copyright notice and this permission notice shall be 
 | |
|  * included in all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * 2. If the Software is incorporated into a build system that allows 
 | |
|  * selection among a list of target devices, then similar target
 | |
|  * devices manufactured by PJRC.COM must be included in the list of
 | |
|  * target devices and selectable in the same manner.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #if defined(K20x) /* chip selection */
 | |
| /* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */
 | |
| 
 | |
| // The EEPROM is really RAM with a hardware-based backup system to
 | |
| // flash memory.  Selecting a smaller size EEPROM allows more wear
 | |
| // leveling, for higher write endurance.  If you edit this file,
 | |
| // set this to the smallest size your application can use.  Also,
 | |
| // due to Freescale's implementation, writing 16 or 32 bit words
 | |
| // (aligned to 2 or 4 byte boundaries) has twice the endurance
 | |
| // compared to writing 8 bit bytes.
 | |
| //
 | |
| #define EEPROM_SIZE 32
 | |
| 
 | |
| // Writing unaligned 16 or 32 bit data is handled automatically when
 | |
| // this is defined, but at a cost of extra code size.  Without this,
 | |
| // any unaligned write will cause a hard fault exception!  If you're
 | |
| // absolutely sure all 16 and 32 bit writes will be aligned, you can
 | |
| // remove the extra unnecessary code.
 | |
| //
 | |
| #define HANDLE_UNALIGNED_WRITES
 | |
| 
 | |
| // Minimum EEPROM Endurance
 | |
| // ------------------------
 | |
| #if (EEPROM_SIZE == 2048)	// 35000 writes/byte or 70000 writes/word
 | |
|   #define EEESIZE 0x33
 | |
| #elif (EEPROM_SIZE == 1024)	// 75000 writes/byte or 150000 writes/word
 | |
|   #define EEESIZE 0x34
 | |
| #elif (EEPROM_SIZE == 512)	// 155000 writes/byte or 310000 writes/word
 | |
|   #define EEESIZE 0x35
 | |
| #elif (EEPROM_SIZE == 256)	// 315000 writes/byte or 630000 writes/word
 | |
|   #define EEESIZE 0x36
 | |
| #elif (EEPROM_SIZE == 128)	// 635000 writes/byte or 1270000 writes/word
 | |
|   #define EEESIZE 0x37
 | |
| #elif (EEPROM_SIZE == 64)	// 1275000 writes/byte or 2550000 writes/word
 | |
|   #define EEESIZE 0x38
 | |
| #elif (EEPROM_SIZE == 32)	// 2555000 writes/byte or 5110000 writes/word
 | |
|   #define EEESIZE 0x39
 | |
| #endif
 | |
| 
 | |
| /** \brief eeprom initialization
 | |
|  *
 | |
|  * FIXME: needs doc
 | |
|  */
 | |
| void eeprom_initialize(void)
 | |
| {
 | |
| 	uint32_t count=0;
 | |
| 	uint16_t do_flash_cmd[] = {
 | |
| 		0xf06f, 0x037f, 0x7003, 0x7803,
 | |
| 		0xf013, 0x0f80, 0xd0fb, 0x4770};
 | |
| 	uint8_t status;
 | |
| 
 | |
| 	if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) {
 | |
| 		// FlexRAM is configured as traditional RAM
 | |
| 		// We need to reconfigure for EEPROM usage
 | |
| 		FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command
 | |
| 		FTFL->FCCOB4 = EEESIZE; // EEPROM Size
 | |
| 		FTFL->FCCOB5 = 0x03; // 0K for Dataflash, 32K for EEPROM backup
 | |
| 		__disable_irq();
 | |
| 		// do_flash_cmd() must execute from RAM.  Luckily the C syntax is simple...
 | |
| 		(*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT));
 | |
| 		__enable_irq();
 | |
| 		status = FTFL->FSTAT;
 | |
| 		if (status & (FTFL_FSTAT_RDCOLERR|FTFL_FSTAT_ACCERR|FTFL_FSTAT_FPVIOL)) {
 | |
| 			FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR|FTFL_FSTAT_ACCERR|FTFL_FSTAT_FPVIOL));
 | |
| 			return; // error
 | |
| 		}
 | |
| 	}
 | |
| 	// wait for eeprom to become ready (is this really necessary?)
 | |
| 	while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
 | |
| 		if (++count > 20000) break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define FlexRAM ((uint8_t *)0x14000000)
 | |
| 
 | |
| /** \brief eeprom read byte
 | |
|  *
 | |
|  * FIXME: needs doc
 | |
|  */
 | |
| uint8_t eeprom_read_byte(const uint8_t *addr)
 | |
| {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 	if (offset >= EEPROM_SIZE) return 0;
 | |
| 	if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | |
| 	return FlexRAM[offset];
 | |
| }
 | |
| 
 | |
| /** \brief eeprom read word
 | |
|  *
 | |
|  * FIXME: needs doc
 | |
|  */
 | |
| uint16_t eeprom_read_word(const uint16_t *addr)
 | |
| {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 	if (offset >= EEPROM_SIZE-1) return 0;
 | |
| 	if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | |
| 	return *(uint16_t *)(&FlexRAM[offset]);
 | |
| }
 | |
| 
 | |
| /** \brief eeprom read dword
 | |
|  *
 | |
|  * FIXME: needs doc
 | |
|  */
 | |
| uint32_t eeprom_read_dword(const uint32_t *addr)
 | |
| {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 	if (offset >= EEPROM_SIZE-3) return 0;
 | |
| 	if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | |
| 	return *(uint32_t *)(&FlexRAM[offset]);
 | |
| }
 | |
| 
 | |
| /** \brief eeprom read block
 | |
|  *
 | |
|  * FIXME: needs doc
 | |
|  */
 | |
| void eeprom_read_block(void *buf, const void *addr, uint32_t len)
 | |
| {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 	uint8_t *dest = (uint8_t *)buf;
 | |
| 	uint32_t end = offset + len;
 | |
| 	
 | |
| 	if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | |
| 	if (end > EEPROM_SIZE) end = EEPROM_SIZE;
 | |
| 	while (offset < end) {
 | |
| 		*dest++ = FlexRAM[offset++];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /** \brief eeprom is ready
 | |
|  *
 | |
|  * FIXME: needs doc
 | |
|  */
 | |
| int eeprom_is_ready(void)
 | |
| {
 | |
| 	return (FTFL->FCNFG & FTFL_FCNFG_EEERDY) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| /** \brief flexram wait
 | |
|  *
 | |
|  * FIXME: needs doc
 | |
|  */
 | |
| static void flexram_wait(void)
 | |
| {
 | |
| 	while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
 | |
| 		// TODO: timeout
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /** \brief eeprom_write_byte
 | |
|  *
 | |
|  * FIXME: needs doc
 | |
|  */
 | |
| void eeprom_write_byte(uint8_t *addr, uint8_t value)
 | |
| {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 
 | |
| 	if (offset >= EEPROM_SIZE) return;
 | |
| 	if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | |
| 	if (FlexRAM[offset] != value) {
 | |
| 		FlexRAM[offset] = value;
 | |
| 		flexram_wait();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /** \brief eeprom write word
 | |
|  *
 | |
|  * FIXME: needs doc
 | |
|  */
 | |
| void eeprom_write_word(uint16_t *addr, uint16_t value)
 | |
| {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 
 | |
| 	if (offset >= EEPROM_SIZE-1) return;
 | |
| 	if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | |
| #ifdef HANDLE_UNALIGNED_WRITES
 | |
| 	if ((offset & 1) == 0) {
 | |
| #endif
 | |
| 		if (*(uint16_t *)(&FlexRAM[offset]) != value) {
 | |
| 			*(uint16_t *)(&FlexRAM[offset]) = value;
 | |
| 			flexram_wait();
 | |
| 		}
 | |
| #ifdef HANDLE_UNALIGNED_WRITES
 | |
| 	} else {
 | |
| 		if (FlexRAM[offset] != value) {
 | |
| 			FlexRAM[offset] = value;
 | |
| 			flexram_wait();
 | |
| 		}
 | |
| 		if (FlexRAM[offset + 1] != (value >> 8)) {
 | |
| 			FlexRAM[offset + 1] = value >> 8;
 | |
| 			flexram_wait();
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /** \brief eeprom write dword
 | |
|  *
 | |
|  * FIXME: needs doc
 | |
|  */
 | |
| void eeprom_write_dword(uint32_t *addr, uint32_t value)
 | |
| {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 
 | |
| 	if (offset >= EEPROM_SIZE-3) return;
 | |
| 	if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | |
| #ifdef HANDLE_UNALIGNED_WRITES
 | |
| 	switch (offset & 3) {
 | |
| 	case 0:
 | |
| #endif
 | |
| 		if (*(uint32_t *)(&FlexRAM[offset]) != value) {
 | |
| 			*(uint32_t *)(&FlexRAM[offset]) = value;
 | |
| 			flexram_wait();
 | |
| 		}
 | |
| 		return;
 | |
| #ifdef HANDLE_UNALIGNED_WRITES
 | |
| 	case 2:
 | |
| 		if (*(uint16_t *)(&FlexRAM[offset]) != value) {
 | |
| 			*(uint16_t *)(&FlexRAM[offset]) = value;
 | |
| 			flexram_wait();
 | |
| 		}
 | |
| 		if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) {
 | |
| 			*(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16;
 | |
| 			flexram_wait();
 | |
| 		}
 | |
| 		return;
 | |
| 	default:
 | |
| 		if (FlexRAM[offset] != value) {
 | |
| 			FlexRAM[offset] = value;
 | |
| 			flexram_wait();
 | |
| 		}
 | |
| 		if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) {
 | |
| 			*(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8;
 | |
| 			flexram_wait();
 | |
| 		}
 | |
| 		if (FlexRAM[offset + 3] != (value >> 24)) {
 | |
| 			FlexRAM[offset + 3] = value >> 24;
 | |
| 			flexram_wait();
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /** \brief eeprom write block
 | |
|  *
 | |
|  * FIXME: needs doc
 | |
|  */
 | |
| void eeprom_write_block(const void *buf, void *addr, uint32_t len)
 | |
| {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 	const uint8_t *src = (const uint8_t *)buf;
 | |
| 
 | |
| 	if (offset >= EEPROM_SIZE) return;
 | |
| 	if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
 | |
| 	if (len >= EEPROM_SIZE) len = EEPROM_SIZE;
 | |
| 	if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset;
 | |
| 	while (len > 0) {
 | |
| 		uint32_t lsb = offset & 3;
 | |
| 		if (lsb == 0 && len >= 4) {
 | |
| 			// write aligned 32 bits
 | |
| 			uint32_t val32;
 | |
| 			val32 = *src++;
 | |
| 			val32 |= (*src++ << 8);
 | |
| 			val32 |= (*src++ << 16);
 | |
| 			val32 |= (*src++ << 24);
 | |
| 			if (*(uint32_t *)(&FlexRAM[offset]) != val32) {
 | |
| 				*(uint32_t *)(&FlexRAM[offset]) = val32;
 | |
| 				flexram_wait();
 | |
| 			}
 | |
| 			offset += 4;
 | |
| 			len -= 4;
 | |
| 		} else if ((lsb == 0 || lsb == 2) && len >= 2) {
 | |
| 			// write aligned 16 bits
 | |
| 			uint16_t val16;
 | |
| 			val16 = *src++;
 | |
| 			val16 |= (*src++ << 8);
 | |
| 			if (*(uint16_t *)(&FlexRAM[offset]) != val16) {
 | |
| 				*(uint16_t *)(&FlexRAM[offset]) = val16;
 | |
| 				flexram_wait();
 | |
| 			}
 | |
| 			offset += 2;
 | |
| 			len -= 2;
 | |
| 		} else {
 | |
| 			// write 8 bits
 | |
| 			uint8_t val8 = *src++;
 | |
| 			if (FlexRAM[offset] != val8) {
 | |
| 				FlexRAM[offset] = val8;
 | |
| 				flexram_wait();
 | |
| 			}
 | |
| 			offset++;
 | |
| 			len--;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
| void do_flash_cmd(volatile uint8_t *fstat)
 | |
| {
 | |
| 	*fstat = 0x80;
 | |
| 	while ((*fstat & 0x80) == 0) ; // wait
 | |
| }
 | |
| 00000000 <do_flash_cmd>:
 | |
|    0:	f06f 037f 	mvn.w	r3, #127	; 0x7f
 | |
|    4:	7003      	strb	r3, [r0, #0]
 | |
|    6:	7803      	ldrb	r3, [r0, #0]
 | |
|    8:	f013 0f80 	tst.w	r3, #128	; 0x80
 | |
|    c:	d0fb      	beq.n	6 <do_flash_cmd+0x6>
 | |
|    e:	4770      	bx	lr
 | |
| */
 | |
| 
 | |
| #elif defined(KL2x) /* chip selection */
 | |
| /* Teensy LC (emulated) */
 | |
| 
 | |
| #define SYMVAL(sym) (uint32_t)(((uint8_t *)&(sym)) - ((uint8_t *)0))
 | |
| 
 | |
| extern uint32_t __eeprom_workarea_start__;
 | |
| extern uint32_t __eeprom_workarea_end__;
 | |
| 
 | |
| #define EEPROM_SIZE 128
 | |
| 
 | |
| static uint32_t flashend = 0;
 | |
| 
 | |
| void eeprom_initialize(void)
 | |
| {
 | |
| 	const uint16_t *p = (uint16_t *)SYMVAL(__eeprom_workarea_start__);
 | |
| 
 | |
| 	do {
 | |
| 		if (*p++ == 0xFFFF) {
 | |
| 			flashend = (uint32_t)(p - 2);
 | |
| 			return;
 | |
| 		}
 | |
| 	} while (p < (uint16_t *)SYMVAL(__eeprom_workarea_end__));
 | |
| 	flashend = (uint32_t)((uint16_t *)SYMVAL(__eeprom_workarea_end__) - 1);
 | |
| }
 | |
| 
 | |
| uint8_t eeprom_read_byte(const uint8_t *addr)
 | |
| {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 	const uint16_t *p = (uint16_t *)SYMVAL(__eeprom_workarea_start__);
 | |
| 	const uint16_t *end = (const uint16_t *)((uint32_t)flashend);
 | |
| 	uint16_t val;
 | |
| 	uint8_t data=0xFF;
 | |
| 
 | |
| 	if (!end) {
 | |
| 		eeprom_initialize();
 | |
| 		end = (const uint16_t *)((uint32_t)flashend);
 | |
| 	}
 | |
| 	if (offset < EEPROM_SIZE) {
 | |
| 		while (p <= end) {
 | |
| 			val = *p++;
 | |
| 			if ((val & 255) == offset) data = val >> 8;
 | |
| 		}
 | |
| 	}
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| static void flash_write(const uint16_t *code, uint32_t addr, uint32_t data)
 | |
| {
 | |
| 	// with great power comes great responsibility....
 | |
| 	uint32_t stat;
 | |
| 	*(uint32_t *)&(FTFA->FCCOB3) = 0x06000000 | (addr & 0x00FFFFFC);
 | |
| 	*(uint32_t *)&(FTFA->FCCOB7) = data;
 | |
| 	__disable_irq();
 | |
| 	(*((void (*)(volatile uint8_t *))((uint32_t)code | 1)))(&(FTFA->FSTAT));
 | |
| 	__enable_irq();
 | |
| 	stat = FTFA->FSTAT & (FTFA_FSTAT_RDCOLERR|FTFA_FSTAT_ACCERR|FTFA_FSTAT_FPVIOL);
 | |
| 	if (stat) {
 | |
| 		FTFA->FSTAT = stat;
 | |
| 	}
 | |
| 	MCM->PLACR |= MCM_PLACR_CFCC;
 | |
| }
 | |
| 
 | |
| void eeprom_write_byte(uint8_t *addr, uint8_t data)
 | |
| {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 	const uint16_t *p, *end = (const uint16_t *)((uint32_t)flashend);
 | |
| 	uint32_t i, val, flashaddr;
 | |
| 	uint16_t do_flash_cmd[] = {
 | |
| 		0x2380, 0x7003, 0x7803, 0xb25b, 0x2b00, 0xdafb, 0x4770};
 | |
| 	uint8_t buf[EEPROM_SIZE];
 | |
| 
 | |
| 	if (offset >= EEPROM_SIZE) return;
 | |
| 	if (!end) {
 | |
| 		eeprom_initialize();
 | |
| 		end = (const uint16_t *)((uint32_t)flashend);
 | |
| 	}
 | |
| 	if (++end < (uint16_t *)SYMVAL(__eeprom_workarea_end__)) {
 | |
| 		val = (data << 8) | offset;
 | |
| 		flashaddr = (uint32_t)end;
 | |
| 		flashend = flashaddr;
 | |
| 		if ((flashaddr & 2) == 0) {
 | |
| 			val |= 0xFFFF0000;
 | |
| 		} else {
 | |
| 			val <<= 16;
 | |
| 			val |= 0x0000FFFF;
 | |
| 		}
 | |
| 		flash_write(do_flash_cmd, flashaddr, val);
 | |
| 	} else {
 | |
| 		for (i=0; i < EEPROM_SIZE; i++) {
 | |
| 			buf[i] = 0xFF;
 | |
| 		}
 | |
| 		val = 0;
 | |
| 		for (p = (uint16_t *)SYMVAL(__eeprom_workarea_start__); p < (uint16_t *)SYMVAL(__eeprom_workarea_end__); p++) {
 | |
| 			val = *p;
 | |
| 			if ((val & 255) < EEPROM_SIZE) {
 | |
| 				buf[val & 255] = val >> 8;
 | |
| 			}
 | |
| 		}
 | |
| 		buf[offset] = data;
 | |
| 		for (flashaddr=(uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_start__); flashaddr < (uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_end__); flashaddr += 1024) {
 | |
| 			*(uint32_t *)&(FTFA->FCCOB3) = 0x09000000 | flashaddr;
 | |
| 			__disable_irq();
 | |
| 			(*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFA->FSTAT));
 | |
| 			__enable_irq();
 | |
| 			val = FTFA->FSTAT & (FTFA_FSTAT_RDCOLERR|FTFA_FSTAT_ACCERR|FTFA_FSTAT_FPVIOL);;
 | |
| 			if (val) FTFA->FSTAT = val;
 | |
| 			MCM->PLACR |= MCM_PLACR_CFCC;
 | |
| 		}
 | |
| 		flashaddr=(uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_start__);
 | |
| 		for (i=0; i < EEPROM_SIZE; i++) {
 | |
| 			if (buf[i] == 0xFF) continue;
 | |
| 			if ((flashaddr & 2) == 0) {
 | |
| 				val = (buf[i] << 8) | i;
 | |
| 			} else {
 | |
| 				val = val | (buf[i] << 24) | (i << 16);
 | |
| 				flash_write(do_flash_cmd, flashaddr, val);
 | |
| 			}
 | |
| 			flashaddr += 2;
 | |
| 		}
 | |
| 		flashend = flashaddr;
 | |
| 		if ((flashaddr & 2)) {
 | |
| 			val |= 0xFFFF0000;
 | |
| 			flash_write(do_flash_cmd, flashaddr, val);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
| void do_flash_cmd(volatile uint8_t *fstat)
 | |
| {
 | |
|         *fstat = 0x80;
 | |
|         while ((*fstat & 0x80) == 0) ; // wait
 | |
| }
 | |
| 00000000 <do_flash_cmd>:
 | |
|    0:	2380      	movs	r3, #128	; 0x80
 | |
|    2:	7003      	strb	r3, [r0, #0]
 | |
|    4:	7803      	ldrb	r3, [r0, #0]
 | |
|    6:	b25b      	sxtb	r3, r3
 | |
|    8:	2b00      	cmp	r3, #0
 | |
|    a:	dafb      	bge.n	4 <do_flash_cmd+0x4>
 | |
|    c:	4770      	bx	lr
 | |
| */
 | |
| 
 | |
| 
 | |
| uint16_t eeprom_read_word(const uint16_t *addr)
 | |
| {
 | |
| 	const uint8_t *p = (const uint8_t *)addr;
 | |
| 	return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8);
 | |
| }
 | |
| 
 | |
| uint32_t eeprom_read_dword(const uint32_t *addr)
 | |
| {
 | |
| 	const uint8_t *p = (const uint8_t *)addr;
 | |
| 	return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8)
 | |
| 		| (eeprom_read_byte(p+2) << 16) | (eeprom_read_byte(p+3) << 24);
 | |
| }
 | |
| 
 | |
| void eeprom_read_block(void *buf, const void *addr, uint32_t len)
 | |
| {
 | |
| 	const uint8_t *p = (const uint8_t *)addr;
 | |
| 	uint8_t *dest = (uint8_t *)buf;
 | |
| 	while (len--) {
 | |
| 		*dest++ = eeprom_read_byte(p++);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int eeprom_is_ready(void)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void eeprom_write_word(uint16_t *addr, uint16_t value)
 | |
| {
 | |
| 	uint8_t *p = (uint8_t *)addr;
 | |
| 	eeprom_write_byte(p++, value);
 | |
| 	eeprom_write_byte(p, value >> 8);
 | |
| }
 | |
| 
 | |
| void eeprom_write_dword(uint32_t *addr, uint32_t value)
 | |
| {
 | |
| 	uint8_t *p = (uint8_t *)addr;
 | |
| 	eeprom_write_byte(p++, value);
 | |
| 	eeprom_write_byte(p++, value >> 8);
 | |
| 	eeprom_write_byte(p++, value >> 16);
 | |
| 	eeprom_write_byte(p, value >> 24);
 | |
| }
 | |
| 
 | |
| void eeprom_write_block(const void *buf, void *addr, uint32_t len)
 | |
| {
 | |
| 	uint8_t *p = (uint8_t *)addr;
 | |
| 	const uint8_t *src = (const uint8_t *)buf;
 | |
| 	while (len--) {
 | |
| 		eeprom_write_byte(p++, *src++);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| // No EEPROM supported, so emulate it
 | |
| 
 | |
| #define EEPROM_SIZE 32
 | |
| static uint8_t buffer[EEPROM_SIZE];
 | |
| 
 | |
| uint8_t eeprom_read_byte(const uint8_t *addr) {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 	return buffer[offset];
 | |
| }
 | |
| 
 | |
| void eeprom_write_byte(uint8_t *addr, uint8_t value) {
 | |
| 	uint32_t offset = (uint32_t)addr;
 | |
| 	buffer[offset] = value;
 | |
| }
 | |
| 
 | |
| uint16_t eeprom_read_word(const uint16_t *addr) {
 | |
| 	const uint8_t *p = (const uint8_t *)addr;
 | |
| 	return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8);
 | |
| }
 | |
| 
 | |
| uint32_t eeprom_read_dword(const uint32_t *addr) {
 | |
| 	const uint8_t *p = (const uint8_t *)addr;
 | |
| 	return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8)
 | |
| 		| (eeprom_read_byte(p+2) << 16) | (eeprom_read_byte(p+3) << 24);
 | |
| }
 | |
| 
 | |
| void eeprom_read_block(void *buf, const void *addr, uint32_t len) {
 | |
| 	const uint8_t *p = (const uint8_t *)addr;
 | |
| 	uint8_t *dest = (uint8_t *)buf;
 | |
| 	while (len--) {
 | |
| 		*dest++ = eeprom_read_byte(p++);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void eeprom_write_word(uint16_t *addr, uint16_t value) {
 | |
| 	uint8_t *p = (uint8_t *)addr;
 | |
| 	eeprom_write_byte(p++, value);
 | |
| 	eeprom_write_byte(p, value >> 8);
 | |
| }
 | |
| 
 | |
| void eeprom_write_dword(uint32_t *addr, uint32_t value) {
 | |
| 	uint8_t *p = (uint8_t *)addr;
 | |
| 	eeprom_write_byte(p++, value);
 | |
| 	eeprom_write_byte(p++, value >> 8);
 | |
| 	eeprom_write_byte(p++, value >> 16);
 | |
| 	eeprom_write_byte(p, value >> 24);
 | |
| }
 | |
| 
 | |
| void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
 | |
| 	uint8_t *p = (uint8_t *)addr;
 | |
| 	const uint8_t *src = (const uint8_t *)buf;
 | |
| 	while (len--) {
 | |
| 		eeprom_write_byte(p++, *src++);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif /* chip selection */
 | |
| // The update functions just calls write for now, but could probably be optimized
 | |
| 
 | |
| void eeprom_update_byte(uint8_t *addr, uint8_t value) {
 | |
| 	eeprom_write_byte(addr, value);
 | |
| }
 | |
| 
 | |
| void eeprom_update_word(uint16_t *addr, uint16_t value) {
 | |
| 	uint8_t *p = (uint8_t *)addr;
 | |
| 	eeprom_write_byte(p++, value);
 | |
| 	eeprom_write_byte(p, value >> 8);
 | |
| }
 | |
| 
 | |
| void eeprom_update_dword(uint32_t *addr, uint32_t value) {
 | |
| 	uint8_t *p = (uint8_t *)addr;
 | |
| 	eeprom_write_byte(p++, value);
 | |
| 	eeprom_write_byte(p++, value >> 8);
 | |
| 	eeprom_write_byte(p++, value >> 16);
 | |
| 	eeprom_write_byte(p, value >> 24);
 | |
| }
 | |
| 
 | |
| void eeprom_update_block(const void *buf, void *addr, uint32_t len) {
 | |
| 	uint8_t *p = (uint8_t *)addr;
 | |
| 	const uint8_t *src = (const uint8_t *)buf;
 | |
| 	while (len--) {
 | |
| 		eeprom_write_byte(p++, *src++);
 | |
| 	}
 | |
| }
 |