qmk-firmware/keyboards/ploopyco/adns5050.c
ploopyco 666623d39a
ADNS-5050 / Ploopy Nano / Ploopy Mini Trackballs (#11994)
* added adns5050 sensor code, as well as implementations for the Ploopy Mini and the Ploopy Nano

* fixed spurious scrolling issue

* recommended fixes for pr linting and cleanup
2021-03-25 23:10:55 +11:00

198 lines
5.4 KiB
C

/* Copyright 2021 Colin Lam (Ploopy Corporation)
* Copyright 2020 Christopher Courtney, aka Drashna Jael're (@drashna) <drashna@live.com>
* Copyright 2019 Sunjun Kim
* Copyright 2019 Hiroyuki Okada
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "adns5050.h"
#include "quantum.h"
#include "wait.h"
#ifdef CONSOLE_ENABLE
# include "print.h"
#endif
#ifndef OPTIC_ROTATED
# define OPTIC_ROTATED false
#endif
// Definitions for the ADNS serial line.
// These really ought to be defined in your config.h, but defaults are
// here if you're really lazy.
#ifndef ADNS_SCLK_PIN
# define ADNS_SCLK_PIN B7
#endif
#ifndef ADNS_SDIO_PIN
# define ADNS_SDIO_PIN C6
#endif
#ifndef ADNS_CS_PIN
# define ADNS_CS_PIN B4
#endif
#ifdef CONSOLE_ENABLE
void print_byte(uint8_t byte) { dprintf("%c%c%c%c%c%c%c%c|", (byte & 0x80 ? '1' : '0'), (byte & 0x40 ? '1' : '0'), (byte & 0x20 ? '1' : '0'), (byte & 0x10 ? '1' : '0'), (byte & 0x08 ? '1' : '0'), (byte & 0x04 ? '1' : '0'), (byte & 0x02 ? '1' : '0'), (byte & 0x01 ? '1' : '0')); }
#endif
// Initialize the ADNS serial pins.
void adns_init(void) {
setPinOutput(ADNS_SCLK_PIN);
setPinOutput(ADNS_SDIO_PIN);
setPinOutput(ADNS_CS_PIN);
}
// Perform a synchronization with the ADNS.
// Just as with the serial protocol, this is used by the slave to send a
// synchronization signal to the master.
void adns_sync(void) {
writePinLow(ADNS_CS_PIN);
wait_us(1);
writePinHigh(ADNS_CS_PIN);
}
void adns_cs_select(void) {
writePinLow(ADNS_CS_PIN);
}
void adns_cs_deselect(void) {
writePinHigh(ADNS_CS_PIN);
}
uint8_t adns_serial_read(void) {
setPinInput(ADNS_SDIO_PIN);
uint8_t byte = 0;
for (uint8_t i = 0; i < 8; ++i) {
writePinLow(ADNS_SCLK_PIN);
wait_us(1);
byte = (byte << 1) | readPin(ADNS_SDIO_PIN);
writePinHigh(ADNS_SCLK_PIN);
wait_us(1);
}
return byte;
}
void adns_serial_write(uint8_t data) {
setPinOutput(ADNS_SDIO_PIN);
for (int8_t b = 7; b >= 0; b--) {
writePinLow(ADNS_SCLK_PIN);
if (data & (1 << b))
writePinHigh(ADNS_SDIO_PIN);
else
writePinLow(ADNS_SDIO_PIN);
wait_us(2);
writePinHigh(ADNS_SCLK_PIN);
}
// tSWR. See page 15 of the ADNS spec sheet.
// Technically, this is only necessary if the next operation is an SDIO
// read. This is not guaranteed to be the case, but we're being lazy.
wait_us(4);
// Note that tSWW is never necessary. All write operations require at
// least 32us, which exceeds tSWW, so there's never a need to wait for it.
}
// Read a byte of data from a register on the ADNS.
// Don't forget to use the register map (as defined in the header file).
uint8_t adns_read_reg(uint8_t reg_addr) {
adns_cs_select();
adns_serial_write(reg_addr);
// We don't need a minimum tSRAD here. That's because a 4ms wait time is
// already included in adns_serial_write(), so we're good.
// See page 10 and 15 of the ADNS spec sheet.
//wait_us(4);
uint8_t byte = adns_serial_read();
// tSRW & tSRR. See page 15 of the ADNS spec sheet.
// Technically, this is only necessary if the next operation is an SDIO
// read or write. This is not guaranteed to be the case.
// Honestly, this wait could probably be removed.
wait_us(1);
adns_cs_deselect();
return byte;
}
void adns_write_reg(uint8_t reg_addr, uint8_t data) {
adns_cs_select();
adns_serial_write(reg_addr);
adns_serial_write(data);
adns_cs_deselect();
}
report_adns_t adns_read_burst(void) {
adns_cs_select();
report_adns_t data;
data.dx = 0;
data.dy = 0;
adns_serial_write(REG_MOTION_BURST);
// We don't need a minimum tSRAD here. That's because a 4ms wait time is
// already included in adns_serial_write(), so we're good.
// See page 10 and 15 of the ADNS spec sheet.
//wait_us(4);
uint8_t x = adns_serial_read();
uint8_t y = adns_serial_read();
// Burst mode returns a bunch of other shit that we don't really need.
// Setting CS to high ends burst mode early.
adns_cs_deselect();
data.dx = convert_twoscomp(x);
data.dy = convert_twoscomp(y);
return data;
}
// Convert a two's complement byte from an unsigned data type into a signed
// data type.
int8_t convert_twoscomp(uint8_t data) {
if ((data & 0x80) == 0x80)
return -128 + (data & 0x7F);
else
return data;
}
// Don't forget to use the definitions for CPI in the header file.
void adns_set_cpi(uint8_t cpi) {
adns_write_reg(REG_MOUSE_CONTROL2, cpi);
}
bool adns_check_signature(void) {
uint8_t pid = adns_read_reg(REG_PRODUCT_ID);
uint8_t rid = adns_read_reg(REG_REVISION_ID);
uint8_t pid2 = adns_read_reg(REG_PRODUCT_ID2);
return (pid == 0x12 && rid == 0x01 && pid2 == 0x26);
}