qmk-firmware/quantum/split_common/i2c.h
James Churchill 28929ad017 Simplify split_common Code significantly (#4772)
* Eliminate separate slave loop

Both master and slave run the standard keyboard_task main loop now.

* Refactor i2c/serial specific code

Simplify some of the preprocessor mess by using common function names.

* Fix missing #endif

* Move direct pin mapping support from miniaxe to split_common

For boards with more pins than sense--sorry, switches.

* Reordering and reformatting only

* Don't run matrix_scan_quantum on slave side

* Clean up the offset/slaveOffset calculations

* Cut undebounced matrix size in half

* Refactor debouncing

* Minor fixups

* Split split_common transport and debounce code into their own files

Can now be replaced with custom versions per keyboard using
CUSTOM_TRANSPORT = yes and CUSTOM_DEBOUNCE = yes

* Refactor debounce for non-split keyboards too

* Update handwired/xealous to build using new split_common

* Fix debounce breaking basic test

* Dodgy method to allow a split kb to only include one of i2c/serial

SPLIT_TRANSPORT = serial or SPLIT_TRANSPORT = i2c will include only
that driver code in the binary.

SPLIT_TRANSPORT = custom (or anything else) will include neither, the
keyboard must supply it's own code

if SPLIT_TRANSPORT is not defined then the original behaviour (include
both avr i2c and serial code) is maintained.

This could be better but it would require explicitly updating all the
existing split keyboards.

* Enable LTO to get lets_split/sockets under the line

* Add docs for SPLIT_TRANSPORT, CUSTOM_MATRIX, CUSTOM_DEBOUNCE

* Remove avr-specific sei() from split matrix_setup

Not needed now that slave doesn't have a separate main loop.
Both sides (on avr) call sei() in lufa's main() after exiting
keyboard_setup().

* Fix QUANTUM_LIB_SRC references and simplify SPLIT_TRANSPORT.

* Add comments and fix formatting.
2019-01-17 10:08:14 -08:00

60 lines
1.6 KiB
C

#pragma once
#include <stdint.h>
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#define I2C_READ 1
#define I2C_WRITE 0
#define I2C_ACK 1
#define I2C_NACK 0
// Address location defines (Keymap should be last, as it's size is dynamic)
#define I2C_BACKLIT_START 0x00
// Need 4 bytes for RGB (32 bit)
#define I2C_RGB_START 0x01
#define I2C_KEYMAP_START 0x06
// Slave buffer (8bit per)
// Rows per hand + backlit space + rgb space
// TODO : Make this dynamically sized
#define SLAVE_BUFFER_SIZE 0x20
// i2c SCL clock frequency
#ifndef SCL_CLOCK
#define SCL_CLOCK 100000L
#endif
// Support 8bits right now (8 cols) will need to edit to take higher (code exists in delta split?)
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_write_data(void *const TXdata, uint8_t dataLen);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);
static inline unsigned char i2c_start_read(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_READ);
}
static inline unsigned char i2c_start_write(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_WRITE);
}
// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();