* Install dependencies before executing unit tests. * Split out UTF-8 decoder. * Fixup python formatting rules. * Add documentation for QGF/QFF and the RLE format used. * Add CLI commands for converting images and fonts. * Add stub rules.mk for QP. * Add stream type. * Add base driver and comms interfaces. * Add support for SPI, SPI+D/C comms drivers. * Include <qp.h> when enabled. * Add base support for SPI+D/C+RST panels, as well as concrete implementation of ST7789. * Add support for GC9A01. * Add support for ILI9341. * Add support for ILI9163. * Add support for SSD1351. * Implement qp_setpixel, including pixdata buffer management. * Implement qp_line. * Implement qp_rect. * Implement qp_circle. * Implement qp_ellipse. * Implement palette interpolation. * Allow for streams to work with either flash or RAM. * Image loading. * Font loading. * QGF palette loading. * Progressive decoder of pixel data supporting Raw+RLE, 1-,2-,4-,8-bpp monochrome and palette-based images. * Image drawing. * Animations. * Font rendering. * Check against 256 colours, dump out the loaded palette if debugging enabled. * Fix build. * AVR is not the intended audience. * `qmk format-c` * Generation fix. * First batch of docs. * More docs and examples. * Review comments. * Public API documentation.
		
			
				
	
	
		
			173 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			173 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// Copyright 2021 Paul Cotter (@gr1mr3aver)
 | 
						|
// Copyright 2021 Nick Brassel (@tzarc)
 | 
						|
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
 | 
						|
#include "qp.h"
 | 
						|
#include "qp_internal.h"
 | 
						|
#include "qp_comms.h"
 | 
						|
#include "qp_draw.h"
 | 
						|
 | 
						|
// Utilize 8-way symmetry to draw circles
 | 
						|
static bool qp_circle_helper_impl(painter_device_t device, uint16_t centerx, uint16_t centery, uint16_t offsetx, uint16_t offsety, bool filled) {
 | 
						|
    /*
 | 
						|
    Circles have the property of 8-way symmetry, so eight pixels can be drawn
 | 
						|
    for each computed [offsetx,offsety] given the center coordinates
 | 
						|
    represented by [centerx,centery].
 | 
						|
 | 
						|
    For filled circles, we can draw horizontal lines between each pair of
 | 
						|
    pixels with the same final value of y.
 | 
						|
 | 
						|
    Two special cases exist and have been optimized:
 | 
						|
    1) offsetx == offsety (the final point), makes half the coordinates
 | 
						|
    equivalent, so we can omit them (and the corresponding fill lines)
 | 
						|
    2) offsetx == 0 (the starting point) means that some horizontal lines
 | 
						|
    would be a single pixel in length, so we write individual pixels instead.
 | 
						|
    This also makes half the symmetrical points identical to their twins,
 | 
						|
    so we only need four points or two points and one line
 | 
						|
    */
 | 
						|
 | 
						|
    int16_t xpx = ((int16_t)centerx) + ((int16_t)offsetx);
 | 
						|
    int16_t xmx = ((int16_t)centerx) - ((int16_t)offsetx);
 | 
						|
    int16_t xpy = ((int16_t)centerx) + ((int16_t)offsety);
 | 
						|
    int16_t xmy = ((int16_t)centerx) - ((int16_t)offsety);
 | 
						|
    int16_t ypx = ((int16_t)centery) + ((int16_t)offsetx);
 | 
						|
    int16_t ymx = ((int16_t)centery) - ((int16_t)offsetx);
 | 
						|
    int16_t ypy = ((int16_t)centery) + ((int16_t)offsety);
 | 
						|
    int16_t ymy = ((int16_t)centery) - ((int16_t)offsety);
 | 
						|
 | 
						|
    if (offsetx == 0) {
 | 
						|
        if (!qp_internal_setpixel_impl(device, centerx, ypy)) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        if (!qp_internal_setpixel_impl(device, centerx, ymy)) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        if (filled) {
 | 
						|
            if (!qp_internal_fillrect_helper_impl(device, xpy, centery, xmy, centery)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (!qp_internal_setpixel_impl(device, xpy, centery)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_setpixel_impl(device, xmy, centery)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (offsetx == offsety) {
 | 
						|
        if (filled) {
 | 
						|
            if (!qp_internal_fillrect_helper_impl(device, xpy, ypy, xmy, ypy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_fillrect_helper_impl(device, xpy, ymy, xmy, ymy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (!qp_internal_setpixel_impl(device, xpy, ypy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_setpixel_impl(device, xmy, ypy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_setpixel_impl(device, xpy, ymy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_setpixel_impl(device, xmy, ymy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
    } else {
 | 
						|
        if (filled) {
 | 
						|
            if (!qp_internal_fillrect_helper_impl(device, xpx, ypy, xmx, ypy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_fillrect_helper_impl(device, xpx, ymy, xmx, ymy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_fillrect_helper_impl(device, xpy, ypx, xmy, ypx)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_fillrect_helper_impl(device, xpy, ymx, xmy, ymx)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (!qp_internal_setpixel_impl(device, xpx, ypy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_setpixel_impl(device, xmx, ypy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_setpixel_impl(device, xpx, ymy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_setpixel_impl(device, xmx, ymy)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_setpixel_impl(device, xpy, ypx)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_setpixel_impl(device, xmy, ypx)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_setpixel_impl(device, xpy, ymx)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            if (!qp_internal_setpixel_impl(device, xmy, ymx)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Quantum Painter External API: qp_circle
 | 
						|
 | 
						|
bool qp_circle(painter_device_t device, uint16_t x, uint16_t y, uint16_t radius, uint8_t hue, uint8_t sat, uint8_t val, bool filled) {
 | 
						|
    qp_dprintf("qp_circle: entry\n");
 | 
						|
    struct painter_driver_t *driver = (struct painter_driver_t *)device;
 | 
						|
    if (!driver->validate_ok) {
 | 
						|
        qp_dprintf("qp_circle: fail (validation_ok == false)\n");
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // plot the initial set of points for x, y and r
 | 
						|
    int16_t xcalc = 0;
 | 
						|
    int16_t ycalc = (int16_t)radius;
 | 
						|
    int16_t err   = ((5 - (radius >> 2)) >> 2);
 | 
						|
 | 
						|
    qp_internal_fill_pixdata(device, (radius * 2) + 1, hue, sat, val);
 | 
						|
 | 
						|
    if (!qp_comms_start(device)) {
 | 
						|
        qp_dprintf("qp_circle: fail (could not start comms)\n");
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    bool ret = true;
 | 
						|
    if (!qp_circle_helper_impl(device, x, y, xcalc, ycalc, filled)) {
 | 
						|
        ret = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ret) {
 | 
						|
        while (xcalc < ycalc) {
 | 
						|
            xcalc++;
 | 
						|
            if (err < 0) {
 | 
						|
                err += (xcalc << 1) + 1;
 | 
						|
            } else {
 | 
						|
                ycalc--;
 | 
						|
                err += ((xcalc - ycalc) << 1) + 1;
 | 
						|
            }
 | 
						|
            if (!qp_circle_helper_impl(device, x, y, xcalc, ycalc, filled)) {
 | 
						|
                ret = false;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    qp_dprintf("qp_circle: %s\n", ret ? "ok" : "fail");
 | 
						|
    qp_comms_stop(device);
 | 
						|
    return ret;
 | 
						|
}
 |