Move ortho & numpad layouts to data driven (#20183)

Co-authored-by: Nick Brassel <nick@tzarc.org>
This commit is contained in:
Ryan
2023-03-29 15:54:34 +11:00
committed by GitHub
parent 06664e8a94
commit 4869b8061c
589 changed files with 19002 additions and 25368 deletions

View File

@@ -1,39 +0,0 @@
/* Copyright 2019 Álvaro "Gondolindrim" Volpato
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "quantum.h"
/* This a shortcut to help you visually see your layout.
*
* The first section contains all of the arguments representing the physical
* layout of the board and position of the keys.
*
* The second converts the arguments into a two-dimensional array which
* represents the switch matrix.
*/
#define LAYOUT_ortho_4x12( \
K00, K01, K02, K03, K04, K05, K06, K07, K08, K09, K0A, K0B, \
K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, K1A, K1B, \
K20, K21, K22, K23, K24, K25, K26, K27, K28, K29, K2A, K2B, \
K30, K31, K32, K33, K34, K35, K36, K37, K38, K39, K3A, K3B \
) \
{ \
{ K00, K01, K02, K03, K04, K05, K06, K07, K08, K09, K0A, K0B }, \
{ K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, K1A, K1B }, \
{ K20, K21, K22, K23, K24, K25, K26, K27, K28, K29, K2A, K2B }, \
{ K30, K31, K32, K33, K34, K35, K36, K37, K38, K39, K3A, K3B } \
}

View File

@@ -26,54 +26,57 @@
"layouts": {
"LAYOUT_ortho_4x12": {
"layout": [
{ "x": 0, "y": 0 },
{ "x": 1, "y": 0 },
{ "x": 2, "y": 0 },
{ "x": 3, "y": 0 },
{ "x": 4, "y": 0 },
{ "x": 5, "y": 0 },
{ "x": 6, "y": 0 },
{ "x": 7, "y": 0 },
{ "x": 8, "y": 0 },
{ "x": 9, "y": 0 },
{ "x": 10, "y": 0 },
{ "x": 11, "y": 0 },
{ "x": 0, "y": 1 },
{ "x": 1, "y": 1 },
{ "x": 2, "y": 1 },
{ "x": 3, "y": 1 },
{ "x": 4, "y": 1 },
{ "x": 5, "y": 1 },
{ "x": 6, "y": 1 },
{ "x": 7, "y": 1 },
{ "x": 8, "y": 1 },
{ "x": 9, "y": 1 },
{ "x": 10, "y": 1 },
{ "x": 11, "y": 1 },
{ "x": 0, "y": 2 },
{ "x": 1, "y": 2 },
{ "x": 2, "y": 2 },
{ "x": 3, "y": 2 },
{ "x": 4, "y": 2 },
{ "x": 5, "y": 2 },
{ "x": 6, "y": 2 },
{ "x": 7, "y": 2 },
{ "x": 8, "y": 2 },
{ "x": 9, "y": 2 },
{ "x": 10, "y": 2 },
{ "x": 11, "y": 2 },
{ "x": 0, "y": 3 },
{ "x": 1, "y": 3 },
{ "x": 2, "y": 3 },
{ "x": 3, "y": 3 },
{ "x": 4, "y": 3 },
{ "x": 5, "y": 3 },
{ "x": 6, "y": 3 },
{ "x": 7, "y": 3 },
{ "x": 8, "y": 3 },
{ "x": 9, "y": 3 },
{ "x": 10, "y": 3 },
{ "x": 11, "y": 3 }
{"matrix": [0, 0], "x": 0, "y": 0},
{"matrix": [0, 1], "x": 1, "y": 0},
{"matrix": [0, 2], "x": 2, "y": 0},
{"matrix": [0, 3], "x": 3, "y": 0},
{"matrix": [0, 4], "x": 4, "y": 0},
{"matrix": [0, 5], "x": 5, "y": 0},
{"matrix": [0, 6], "x": 6, "y": 0},
{"matrix": [0, 7], "x": 7, "y": 0},
{"matrix": [0, 8], "x": 8, "y": 0},
{"matrix": [0, 9], "x": 9, "y": 0},
{"matrix": [0, 10], "x": 10, "y": 0},
{"matrix": [0, 11], "x": 11, "y": 0},
{"matrix": [1, 0], "x": 0, "y": 1},
{"matrix": [1, 1], "x": 1, "y": 1},
{"matrix": [1, 2], "x": 2, "y": 1},
{"matrix": [1, 3], "x": 3, "y": 1},
{"matrix": [1, 4], "x": 4, "y": 1},
{"matrix": [1, 5], "x": 5, "y": 1},
{"matrix": [1, 6], "x": 6, "y": 1},
{"matrix": [1, 7], "x": 7, "y": 1},
{"matrix": [1, 8], "x": 8, "y": 1},
{"matrix": [1, 9], "x": 9, "y": 1},
{"matrix": [1, 10], "x": 10, "y": 1},
{"matrix": [1, 11], "x": 11, "y": 1},
{"matrix": [2, 0], "x": 0, "y": 2},
{"matrix": [2, 1], "x": 1, "y": 2},
{"matrix": [2, 2], "x": 2, "y": 2},
{"matrix": [2, 3], "x": 3, "y": 2},
{"matrix": [2, 4], "x": 4, "y": 2},
{"matrix": [2, 5], "x": 5, "y": 2},
{"matrix": [2, 6], "x": 6, "y": 2},
{"matrix": [2, 7], "x": 7, "y": 2},
{"matrix": [2, 8], "x": 8, "y": 2},
{"matrix": [2, 9], "x": 9, "y": 2},
{"matrix": [2, 10], "x": 10, "y": 2},
{"matrix": [2, 11], "x": 11, "y": 2},
{"matrix": [3, 0], "x": 0, "y": 3},
{"matrix": [3, 1], "x": 1, "y": 3},
{"matrix": [3, 2], "x": 2, "y": 3},
{"matrix": [3, 3], "x": 3, "y": 3},
{"matrix": [3, 4], "x": 4, "y": 3},
{"matrix": [3, 5], "x": 5, "y": 3},
{"matrix": [3, 6], "x": 6, "y": 3},
{"matrix": [3, 7], "x": 7, "y": 3},
{"matrix": [3, 8], "x": 8, "y": 3},
{"matrix": [3, 9], "x": 9, "y": 3},
{"matrix": [3, 10], "x": 10, "y": 3},
{"matrix": [3, 11], "x": 11, "y": 3}
]
}
}

View File

@@ -14,7 +14,8 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "beta.h"
#include "quantum.h"
void board_init(void) {
setPinInput(B6);
setPinInput(B7);

View File

@@ -1,31 +0,0 @@
/* Copyright 2020 Gondolindrim
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "quantum.h"
#define LAYOUT_ortho_4x12( \
K00, K01, K02, K03, K04, K05, K06, K07, K08, K09, K0A, K0B, \
K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, K1A, K1B, \
K20, K21, K22, K23, K24, K25, K26, K27, K28, K29, K2A, K2B, \
K30, K31, K32, K33, K34, K35, K36, K37, K38, K39, K3A, K3B \
)\
{\
{ K00, K01, K02, K03, K04, K05, K06, K07, K08, K09, K0A, K0B }, \
{ K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, K1A, K1B }, \
{ K20, K21, K22, K23, K24, K25, K26, K27, K28, K29, K2A, K2B }, \
{ K30, K31, K32, K33, K34, K35, K36, K37, K38, K39, K3A, K3B } \
}

View File

@@ -25,54 +25,57 @@
"layouts": {
"LAYOUT_ortho_4x12": {
"layout": [
{ "x": 0, "y": 0 },
{ "x": 1, "y": 0 },
{ "x": 2, "y": 0 },
{ "x": 3, "y": 0 },
{ "x": 4, "y": 0 },
{ "x": 5, "y": 0 },
{ "x": 6, "y": 0 },
{ "x": 7, "y": 0 },
{ "x": 8, "y": 0 },
{ "x": 9, "y": 0 },
{ "x": 10, "y": 0 },
{ "x": 11, "y": 0 },
{ "x": 0, "y": 1 },
{ "x": 1, "y": 1 },
{ "x": 2, "y": 1 },
{ "x": 3, "y": 1 },
{ "x": 4, "y": 1 },
{ "x": 5, "y": 1 },
{ "x": 6, "y": 1 },
{ "x": 7, "y": 1 },
{ "x": 8, "y": 1 },
{ "x": 9, "y": 1 },
{ "x": 10, "y": 1 },
{ "x": 11, "y": 1 },
{ "x": 0, "y": 2 },
{ "x": 1, "y": 2 },
{ "x": 2, "y": 2 },
{ "x": 3, "y": 2 },
{ "x": 4, "y": 2 },
{ "x": 5, "y": 2 },
{ "x": 6, "y": 2 },
{ "x": 7, "y": 2 },
{ "x": 8, "y": 2 },
{ "x": 9, "y": 2 },
{ "x": 10, "y": 2 },
{ "x": 11, "y": 2 },
{ "x": 0, "y": 3 },
{ "x": 1, "y": 3 },
{ "x": 2, "y": 3 },
{ "x": 3, "y": 3 },
{ "x": 4, "y": 3 },
{ "x": 5, "y": 3 },
{ "x": 6, "y": 3 },
{ "x": 7, "y": 3 },
{ "x": 8, "y": 3 },
{ "x": 9, "y": 3 },
{ "x": 10, "y": 3 },
{ "x": 11, "y": 3 }
{"matrix": [0, 0], "x": 0, "y": 0},
{"matrix": [0, 1], "x": 1, "y": 0},
{"matrix": [0, 2], "x": 2, "y": 0},
{"matrix": [0, 3], "x": 3, "y": 0},
{"matrix": [0, 4], "x": 4, "y": 0},
{"matrix": [0, 5], "x": 5, "y": 0},
{"matrix": [0, 6], "x": 6, "y": 0},
{"matrix": [0, 7], "x": 7, "y": 0},
{"matrix": [0, 8], "x": 8, "y": 0},
{"matrix": [0, 9], "x": 9, "y": 0},
{"matrix": [0, 10], "x": 10, "y": 0},
{"matrix": [0, 11], "x": 11, "y": 0},
{"matrix": [1, 0], "x": 0, "y": 1},
{"matrix": [1, 1], "x": 1, "y": 1},
{"matrix": [1, 2], "x": 2, "y": 1},
{"matrix": [1, 3], "x": 3, "y": 1},
{"matrix": [1, 4], "x": 4, "y": 1},
{"matrix": [1, 5], "x": 5, "y": 1},
{"matrix": [1, 6], "x": 6, "y": 1},
{"matrix": [1, 7], "x": 7, "y": 1},
{"matrix": [1, 8], "x": 8, "y": 1},
{"matrix": [1, 9], "x": 9, "y": 1},
{"matrix": [1, 10], "x": 10, "y": 1},
{"matrix": [1, 11], "x": 11, "y": 1},
{"matrix": [2, 0], "x": 0, "y": 2},
{"matrix": [2, 1], "x": 1, "y": 2},
{"matrix": [2, 2], "x": 2, "y": 2},
{"matrix": [2, 3], "x": 3, "y": 2},
{"matrix": [2, 4], "x": 4, "y": 2},
{"matrix": [2, 5], "x": 5, "y": 2},
{"matrix": [2, 6], "x": 6, "y": 2},
{"matrix": [2, 7], "x": 7, "y": 2},
{"matrix": [2, 8], "x": 8, "y": 2},
{"matrix": [2, 9], "x": 9, "y": 2},
{"matrix": [2, 10], "x": 10, "y": 2},
{"matrix": [2, 11], "x": 11, "y": 2},
{"matrix": [3, 0], "x": 0, "y": 3},
{"matrix": [3, 1], "x": 1, "y": 3},
{"matrix": [3, 2], "x": 2, "y": 3},
{"matrix": [3, 3], "x": 3, "y": 3},
{"matrix": [3, 4], "x": 4, "y": 3},
{"matrix": [3, 5], "x": 5, "y": 3},
{"matrix": [3, 6], "x": 6, "y": 3},
{"matrix": [3, 7], "x": 7, "y": 3},
{"matrix": [3, 8], "x": 8, "y": 3},
{"matrix": [3, 9], "x": 9, "y": 3},
{"matrix": [3, 10], "x": 10, "y": 3},
{"matrix": [3, 11], "x": 11, "y": 3}
]
}
}