qmk-firmware/keyboard/hhkb/matrix.c

268 lines
7.0 KiB
C
Raw Normal View History

2011-07-20 17:32:52 +02:00
/*
Copyright 2011 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
2010-10-09 18:50:36 +02:00
/*
* scan matrix
*/
2010-10-27 13:51:45 +02:00
#include <stdint.h>
#include <stdbool.h>
2010-10-09 18:50:36 +02:00
#include <avr/io.h>
2011-05-15 17:08:06 +02:00
#include <avr/interrupt.h>
2010-10-09 18:50:36 +02:00
#include <util/delay.h>
2012-10-17 14:43:44 +02:00
#include "print.h"
2012-12-15 18:32:07 +01:00
#include "debug.h"
2010-10-27 13:51:45 +02:00
#include "util.h"
#include "timer.h"
2011-02-21 17:21:53 +01:00
#include "matrix.h"
2010-10-09 18:50:36 +02:00
// Timer resolution check
#if (1000000/TIMER_RAW_FREQ > 20)
# error "Timer resolution(>20us) is not enough for HHKB matrix scan tweak on V-USB."
#endif
#if (MATRIX_COLS > 16)
# error "MATRIX_COLS must not exceed 16"
#endif
#if (MATRIX_ROWS > 255)
# error "MATRIX_ROWS must not exceed 255"
#endif
// matrix state buffer(1:on, 0:off)
static matrix_row_t *matrix;
static matrix_row_t *matrix_prev;
static matrix_row_t _matrix0[MATRIX_ROWS];
static matrix_row_t _matrix1[MATRIX_ROWS];
2011-05-15 17:08:06 +02:00
// Matrix I/O ports
2010-10-09 18:50:36 +02:00
//
2011-05-15 17:08:06 +02:00
// row: HC4051[A,B,C] selects scan row0-7
// col: LS145[A,B,C,D] selects scan col0-7 and enable(D)
// key: on: 0/off: 1
// prev: unknown: output previous key state(negated)?
#if defined(__AVR_AT90USB1286__)
// Ports for Teensy++
2011-05-15 17:08:06 +02:00
// row: PB0-2
// col: PB3-5,6
// key: PE6(pull-uped)
// prev: PE7
#define KEY_INIT() do { \
DDRB |= 0x7F; \
DDRE |= (1<<7); \
DDRE &= ~(1<<6); \
PORTE |= (1<<6); \
} while (0)
#define KEY_SELECT(ROW, COL) (PORTB = (PORTB & 0xC0) | \
(((COL) & 0x07)<<3) | \
((ROW) & 0x07))
#define KEY_ENABLE() (PORTB &= ~(1<<6))
#define KEY_UNABLE() (PORTB |= (1<<6))
#define KEY_STATE() (PINE & (1<<6))
#define KEY_PREV_ON() (PORTE |= (1<<7))
#define KEY_PREV_OFF() (PORTE &= ~(1<<7))
#define KEY_POWER_ON()
#define KEY_POWER_OFF()
#elif defined(__AVR_ATmega328P__)
2011-05-15 17:08:06 +02:00
// Ports for V-USB
// key: PB0(pull-uped)
// prev: PB1
// row: PB2-4
// col: PC0-2,3
// power: PB5(Low:on/Hi-z:off)
2011-05-15 17:08:06 +02:00
#define KEY_INIT() do { \
DDRB |= 0x3E; \
DDRB &= ~(1<<0); \
PORTB |= 1<<0; \
DDRC |= 0x0F; \
KEY_UNABLE(); \
KEY_PREV_OFF(); \
2011-05-15 17:08:06 +02:00
} while (0)
#define KEY_SELECT(ROW, COL) do { \
PORTB = (PORTB & 0xE3) | ((ROW) & 0x07)<<2; \
PORTC = (PORTC & 0xF8) | ((COL) & 0x07); \
} while (0)
#define KEY_ENABLE() (PORTC &= ~(1<<3))
#define KEY_UNABLE() (PORTC |= (1<<3))
#define KEY_STATE() (PINB & (1<<0))
#define KEY_PREV_ON() (PORTB |= (1<<1))
#define KEY_PREV_OFF() (PORTB &= ~(1<<1))
// Power supply switching
#define KEY_POWER_ON() do { \
KEY_INIT(); \
PORTB &= ~(1<<5); \
_delay_ms(1); \
} while (0)
#define KEY_POWER_OFF() do { \
DDRB &= ~0x3F; \
PORTB &= ~0x3F; \
DDRC &= ~0x0F; \
PORTC &= ~0x0F; \
} while (0)
#else
# error "define code for matrix scan"
2011-05-15 17:08:06 +02:00
#endif
2010-10-09 18:50:36 +02:00
2010-10-23 18:17:26 +02:00
inline
uint8_t matrix_rows(void)
{
2010-10-23 18:17:26 +02:00
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
2010-10-23 18:17:26 +02:00
return MATRIX_COLS;
}
2010-10-09 18:50:36 +02:00
void matrix_init(void)
{
2012-12-15 18:32:07 +01:00
#ifdef DEBUG
print_enable = true;
debug_enable = true;
debug_keyboard = true;
#endif
2011-05-15 17:08:06 +02:00
KEY_INIT();
2010-10-09 18:50:36 +02:00
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) _matrix0[i] = 0x00;
for (uint8_t i=0; i < MATRIX_ROWS; i++) _matrix1[i] = 0x00;
2010-10-09 18:50:36 +02:00
matrix = _matrix0;
matrix_prev = _matrix1;
}
uint8_t matrix_scan(void)
2010-10-09 18:50:36 +02:00
{
uint8_t *tmp;
tmp = matrix_prev;
matrix_prev = matrix;
matrix = tmp;
KEY_POWER_ON();
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS; col++) {
2011-05-15 17:08:06 +02:00
KEY_SELECT(row, col);
_delay_us(40);
// Not sure this is needed. This just emulates HHKB controller's behaviour.
if (matrix_prev[row] & (1<<col)) {
2011-05-15 17:08:06 +02:00
KEY_PREV_ON();
}
_delay_us(7);
// NOTE: KEY_STATE is valid only in 20us after KEY_ENABLE.
// If V-USB interrupts in this section we could lose 40us or so
// and would read invalid value from KEY_STATE.
uint8_t last = TIMER_RAW;
2011-05-15 17:08:06 +02:00
KEY_ENABLE();
// Wait for KEY_STATE outputs its value.
// 1us was ok on one HHKB, but not worked on another.
_delay_us(10);
2011-05-15 17:08:06 +02:00
if (KEY_STATE()) {
matrix[row] &= ~(1<<col);
} else {
matrix[row] |= (1<<col);
2010-10-09 18:50:36 +02:00
}
// Ignore if this code region execution time elapses more than 20us.
// MEMO: 20[us] * (TIMER_RAW_FREQ / 1000000)[count per us]
// MEMO: then change above using this rule: a/(b/c) = a*1/(b/c) = a*(c/b)
if (TIMER_DIFF_RAW(TIMER_RAW, last) > 20/(1000000/TIMER_RAW_FREQ)) {
matrix[row] = matrix_prev[row];
}
2011-05-15 17:08:06 +02:00
KEY_PREV_OFF();
KEY_UNABLE();
// NOTE: KEY_STATE keep its state in 20us after KEY_ENABLE.
// This takes 25us or more to make sure KEY_STATE returns to idle state.
_delay_us(150);
2010-10-09 18:50:36 +02:00
}
}
KEY_POWER_OFF();
2010-10-09 18:50:36 +02:00
return 1;
}
bool matrix_is_modified(void)
{
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
2010-10-09 18:50:36 +02:00
if (matrix[i] != matrix_prev[i])
return true;
}
return false;
}
2010-10-23 18:17:26 +02:00
inline
bool matrix_has_ghost(void)
{
2010-10-09 18:50:36 +02:00
return false;
}
2010-10-23 18:17:26 +02:00
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & (1<<col));
}
inline
#if (MATRIX_COLS <= 8)
uint8_t matrix_get_row(uint8_t row)
#else
uint16_t matrix_get_row(uint8_t row)
#endif
{
2010-10-23 18:17:26 +02:00
return matrix[row];
}
2012-10-17 14:43:44 +02:00
void matrix_print(void)
{
#if (MATRIX_COLS <= 8)
2012-10-17 14:43:44 +02:00
print("\nr/c 01234567\n");
#else
2012-10-17 14:43:44 +02:00
print("\nr/c 0123456789ABCDEF\n");
#endif
for (uint8_t row = 0; row < matrix_rows(); row++) {
2012-10-17 14:43:44 +02:00
phex(row); print(": ");
#if (MATRIX_COLS <= 8)
2012-10-17 14:43:44 +02:00
pbin_reverse(matrix_get_row(row));
#else
2012-10-17 14:43:44 +02:00
pbin_reverse16(matrix_get_row(row));
#endif
2012-10-17 14:43:44 +02:00
print("\n");
2010-10-23 18:17:26 +02:00
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
#if (MATRIX_COLS <= 8)
2010-10-27 13:51:45 +02:00
count += bitpop(matrix[i]);
#else
count += bitpop16(matrix[i]);
#endif
}
return count;
}