qmk-firmware/keyboards/sx60/matrix.c

294 lines
7.6 KiB
C
Raw Normal View History

/*
Copyright 2012-2017 Jun Wako, Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#if defined(__AVR__)
#include <avr/io.h>
#endif
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "timer.h"
#include "sx60.h"
/* Set 0 if debouncing isn't needed */
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
#if (DEBOUNCE > 0)
static uint16_t debouncing_time;
static bool debouncing = false;
#endif
#if (MATRIX_COLS <= 8)
# define print_matrix_header() print("\nr/c 01234567\n")
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
# define matrix_bitpop(i) bitpop(matrix[i])
# define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
# define matrix_bitpop(i) bitpop16(matrix[i])
# define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
# define matrix_bitpop(i) bitpop32(matrix[i])
# define ROW_SHIFTER ((uint32_t)1)
#endif
#ifdef MATRIX_MASKED
extern const matrix_row_t matrix_mask[];
#endif
static const uint8_t col_pins[ATMEGA_COLS] = MATRIX_COL_PINS;
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static uint8_t mcp23018_reset_loop;
static void init_cols(void);
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
static void unselect_rows(void);
static void select_row(uint8_t row);
__attribute__ ((weak))
void matrix_init_quantum(void) {
matrix_init_kb();
}
__attribute__ ((weak))
void matrix_scan_quantum(void) {
matrix_scan_kb();
}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
inline
uint8_t matrix_rows(void) {
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void) {
return MATRIX_COLS;
}
void matrix_init(void) {
mcp23018_status = true;
/* initialize row and col */
unselect_rows();
init_cols();
/* initialize matrix state: all keys off */
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
matrix_init_quantum();
}
uint8_t matrix_scan(void)
{
if (mcp23018_status) {
/* if there was an error */
if (++mcp23018_reset_loop == 0) {
/* since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
this will be approx bit more frequent than once per second */
print("trying to reset mcp23018\n");
mcp23018_status = init_mcp23018();
if (mcp23018_status) {
print("left side not responding\n");
} else {
print("left side attached\n");
}
}
}
/* Set row, read cols */
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
# if (DEBOUNCE > 0)
bool matrix_changed = read_cols_on_row(matrix_debouncing, current_row);
if (matrix_changed) {
debouncing = true;
debouncing_time = timer_read();
}
# else
read_cols_on_row(matrix, current_row);
# endif
}
# if (DEBOUNCE > 0)
if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCE)) {
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = matrix_debouncing[i];
}
debouncing = false;
}
# endif
matrix_scan_quantum();
return 1;
}
bool matrix_is_modified(void)
{
#if (DEBOUNCE > 0)
if (debouncing) return false;
#endif
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
/* Matrix mask lets you disable switches in the returned matrix data. For example, if you have a
switch blocker installed and the switch is always pressed. */
#ifdef MATRIX_MASKED
return matrix[row] & matrix_mask[row];
#else
return matrix[row];
#endif
}
void matrix_print(void)
{
print_matrix_header();
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
print_hex8(row); print(": ");
print_matrix_row(row);
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += matrix_bitpop(i);
}
return count;
}
static void init_cols(void)
{
for(uint8_t x = 0; x < ATMEGA_COLS; x++) {
uint8_t pin = col_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); /* IN */
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); /* HI */
}
}
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
{
/* Store last value of row prior to reading */
matrix_row_t last_row_value = current_matrix[current_row];
/* Clear data in matrix row */
current_matrix[current_row] = 0;
/* Select row and wait for row selecton to stabilize */
select_row(current_row);
wait_us(30);
if (mcp23018_status) {
/* if there was an error */
return 0;
} else {
uint8_t data = 0;
mcp23018_status = i2c_readReg(I2C_ADDR, GPIOA, &data, 1, I2C_TIMEOUT);
if (!mcp23018_status) {
current_matrix[current_row] |= (~((uint16_t)data) << 8);
}
}
/* For each col... */
for(uint8_t col_index = 0; col_index < ATMEGA_COLS; col_index++) {
/* Select the col pin to read (active low) */
uint8_t pin = col_pins[col_index];
uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
/* Populate the matrix row with the state of the col pin */
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
}
/* Unselect row */
unselect_rows();
return (last_row_value != current_matrix[current_row]);
}
static void select_row(uint8_t row)
{
if (mcp23018_status) {
/* if there was an error do nothing */
} else {
/* set active row low : 0
set active row output : 1
set other rows hi-Z : 1 */
uint8_t port = 0xFF & ~(1<<abs(row-4));
mcp23018_status = i2c_writeReg(I2C_ADDR, GPIOB, &port, 1, I2C_TIMEOUT);
}
uint8_t pin = row_pins[row];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); /* OUT */
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); /* LOW */
}
static void unselect_rows(void)
{
for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
uint8_t pin = row_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); /* IN */
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); /* HI */
}
}