qmk-firmware/keyboards/converter/hp_46010a/matrix.c

244 lines
5.8 KiB
C
Raw Normal View History

/*
Copyright 2018 listofoptions <listofoptions@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#if defined(__AVR__)
#include <avr/io.h>
#endif
#include <util/delay.h>
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "timer.h"
#include <LUFA/Drivers/Peripheral/SPI.h>
#include "config.h"
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
#if ( DEBOUNCE > 0 )
static uint16_t debouncing_time ;
static bool debouncing = false ;
#endif
static uint8_t matrix [MATRIX_ROWS] = {0};
#if ( DEBOUNCE > 0 )
static uint8_t matrix_debounce_old [MATRIX_ROWS] = {0};
static uint8_t matrix_debounce_new [MATRIX_ROWS] = {0};
#endif
__attribute__ ((weak))
void matrix_init_quantum(void) {
matrix_init_kb();
}
__attribute__ ((weak))
void matrix_scan_quantum(void) {
matrix_scan_kb();
}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
// the keyboard's internal wiring is such that the inputs to the logic are
// a clock signal, and a reset line.
// the output is a single output pin. im bitbanging here, but the SPI controller
// would work normally
//
// the device functions, by using the clock signal to count 128 bits, the lower
// 3 bits of this 7 bit counter are tied to a 1-of-8 multiplexer, this forms
// the columns.
// the upper 4 bits form the rows, and are decoded using bcd to decimal
// decoders, so that 14 out of 16 of the outputs are wired to the rows of the
// matrix. each switch has a diode, such that the row signal feeds into the
// switch, and then into the diode, then into one of the columns into the
// matrix. the reset pin can be used to reset the entire counter.
#define RESET _BV(PB0)
#define SCLK _BV(PB1)
#define SDATA _BV(PB3)
#define LED _BV(PD6)
inline
static
void SCLK_increment(void) {
PORTB &= ~SCLK ;
_delay_us( 4 ) ; // make sure the line is stable
PORTB |= SCLK ;
_delay_us( 4 ) ;
return ;
}
inline
static
void Matrix_Reset(void) {
PORTB |= RESET ;
_delay_us( 4 ) ; // make sure the line is stable
PORTB &= ~RESET ;
return ;
}
inline
static
uint8_t Matrix_ReceiveByte (void) {
uint8_t received = 0 ;
uint8_t temp = 0 ;
for ( uint8_t bit = 0; bit < MATRIX_COLS; ++bit ) {
// toggle the clock
SCLK_increment();
temp = (PINB & SDATA) << 4 ;
received |= temp >> bit ;
}
return received ;
}
inline
static
void Matrix_ThrowByte(void) {
// we use MATRIX_COLS - 1 here because that would put us at 7 clocks
for ( uint8_t bit = 0; bit < MATRIX_COLS - 1; ++bit ) {
// toggle the clock
SCLK_increment();
}
return ;
}
void matrix_init () {
// debug_matrix = 1;
// PB0 (SS) and PB1 (SCLK) set to outputs
DDRB |= RESET | SCLK ;
// PB2, is unused, and PB3 is our serial input
DDRB &= ~SDATA ;
// SS is reset for this board, and is active High
// SCLK is the serial clock and is active High
PORTB &= ~RESET ;
PORTB |= SCLK ;
// led pin
DDRD |= LED ;
PORTD &= ~LED ;
matrix_init_quantum();
//toggle reset, to put the keyboard logic into a known state
Matrix_Reset() ;
}
uint8_t matrix_scan(void) {
// the first byte of the keyboard's output data can be ignored
Matrix_ThrowByte();
#if ( DEBOUNCE > 0 )
for ( uint8_t row = 0 ; row < MATRIX_ROWS ; ++row ) {
//transfer old debouncing values
matrix_debounce_old[row] = matrix_debounce_new[row] ;
// read new key-states in
matrix_debounce_new[row] = Matrix_ReceiveByte() ;
if ( matrix_debounce_new[row] != matrix_debounce_old[row] ) {
debouncing = true ;
debouncing_time = timer_read() ;
}
}
#else
// without debouncing we simply just read in the raw matrix
for ( uint8_t row = 0 ; row < MATRIX_ROWS ; ++row ) {
matrix[row] = Matrix_ReceiveByte ;
}
#endif
#if ( DEBOUNCE > 0 )
if ( debouncing && ( timer_elapsed( debouncing_time ) > DEBOUNCE ) ) {
for ( uint8_t row = 0 ; row < MATRIX_ROWS ; ++row ) {
matrix[row] = matrix_debounce_new[row] ;
}
debouncing = false ;
}
#endif
Matrix_Reset() ;
matrix_scan_quantum() ;
return 1;
}
inline
uint8_t matrix_get_row( uint8_t row ) {
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 01234567\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
print_hex8(row); print(": ");
print_bin_reverse8(matrix_get_row(row));
print("\n");
}
}
inline
uint8_t matrix_rows(void) {
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void) {
return MATRIX_COLS;
}
// as an aside, I used the M0110 converter:
// tmk_core/common/keyboard.c, quantum/matrix.c, and the project layout of the planck
// the online ducmentation starting from :
// https://docs.qmk.fm/#/config_options
// https://docs.qmk.fm/#/understanding_qmk
// and probably a few i forgot....