qmk-firmware/keyboards/miniaxe/matrix.c

597 lines
15 KiB
C
Raw Normal View History

/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "pro_micro.h"
#include "config.h"
#include "timer.h"
#include "split_flags.h"
#ifdef RGBLIGHT_ENABLE
# include "rgblight.h"
#endif
#ifdef BACKLIGHT_ENABLE
# include "backlight.h"
extern backlight_config_t backlight_config;
#endif
#if defined(USE_I2C) || defined(EH)
# include "i2c.h"
#else // USE_SERIAL
# include "serial.h"
#endif
#ifndef DEBOUNCING_DELAY
# define DEBOUNCING_DELAY 5
#endif
#if (DEBOUNCING_DELAY > 0)
static uint16_t debouncing_time;
static bool debouncing = false;
#endif
#if (MATRIX_COLS <= 8)
# define print_matrix_header() print("\nr/c 01234567\n")
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
# define matrix_bitpop(i) bitpop(matrix[i])
# define ROW_SHIFTER ((uint8_t)1)
#else
# error "Currently only supports 8 COLS"
#endif
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
#define ERROR_DISCONNECT_COUNT 5
#define ROWS_PER_HAND (MATRIX_ROWS/2)
static uint8_t error_count = 0;
#if ((DIODE_DIRECTION == COL2ROW) || (DIODE_DIRECTION == ROW2COL))
static uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
#elif (DIODE_DIRECTION == CUSTOM_MATRIX)
static uint8_t row_col_pins[MATRIX_ROWS][MATRIX_COLS] = MATRIX_ROW_COL_PINS;
#endif
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
#if (DIODE_DIRECTION == COL2ROW)
static void init_cols(void);
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
static void unselect_rows(void);
static void select_row(uint8_t row);
static void unselect_row(uint8_t row);
#elif (DIODE_DIRECTION == ROW2COL)
static void init_rows(void);
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
static void unselect_cols(void);
static void unselect_col(uint8_t col);
static void select_col(uint8_t col);
#elif (DIODE_DIRECTION == CUSTOM_MATRIX)
static void init_cols_rows(void);
static bool read_cols(matrix_row_t current_matrix[], uint8_t current_row);
#endif
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
__attribute__ ((weak))
void matrix_slave_scan_user(void) {
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
#ifdef DISABLE_JTAG
// JTAG disable for PORT F. write JTD bit twice within four cycles.
MCUCR |= (1<<JTD);
MCUCR |= (1<<JTD);
#endif
debug_enable = true;
debug_matrix = true;
debug_mouse = true;
// Set pinout for right half if pinout for that half is defined
if (!isLeftHand) {
#ifdef MATRIX_ROW_PINS_RIGHT
const uint8_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT;
for (uint8_t i = 0; i < MATRIX_ROWS; i++)
row_pins[i] = row_pins_right[i];
#endif
#ifdef MATRIX_COL_PINS_RIGHT
const uint8_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT;
for (uint8_t i = 0; i < MATRIX_COLS; i++)
col_pins[i] = col_pins_right[i];
#endif
}
// initialize row and col
#if (DIODE_DIRECTION == COL2ROW)
unselect_rows();
init_cols();
#elif (DIODE_DIRECTION == ROW2COL)
unselect_cols();
init_rows();
#elif (DIODE_DIRECTION == CUSTOM_MATRIX)
init_cols_rows();
#endif
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
matrix_init_quantum();
}
uint8_t _matrix_scan(void)
{
int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
#if (DIODE_DIRECTION == COL2ROW)
// Set row, read cols
for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
# if (DEBOUNCING_DELAY > 0)
bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row);
if (matrix_changed) {
debouncing = true;
debouncing_time = timer_read();
}
# else
read_cols_on_row(matrix+offset, current_row);
# endif
}
#elif (DIODE_DIRECTION == ROW2COL)
// Set col, read rows
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
# if (DEBOUNCING_DELAY > 0)
bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col);
if (matrix_changed) {
debouncing = true;
debouncing_time = timer_read();
}
# else
read_rows_on_col(matrix+offset, current_col);
# endif
}
#elif (DIODE_DIRECTION == CUSTOM_MATRIX)
// Set row, read cols
for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
# if (DEBOUNCING_DELAY > 0)
bool matrix_changed = read_cols(matrix_debouncing+offset, current_row);
if (matrix_changed) {
debouncing = true;
debouncing_time = timer_read();
}
# else
read_cols(matrix+offset, current_row);
# endif
}
#endif
# if (DEBOUNCING_DELAY > 0)
if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
matrix[i+offset] = matrix_debouncing[i+offset];
}
debouncing = false;
}
# endif
return 1;
}
#if defined(USE_I2C) || defined(EH)
// Get rows from other half over i2c
int i2c_transaction(void) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
int err = 0;
// write backlight info
#ifdef BACKLIGHT_ENABLE
if (BACKLIT_DIRTY) {
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
if (err) goto i2c_error;
// Backlight location
err = i2c_master_write(I2C_BACKLIT_START);
if (err) goto i2c_error;
// Write backlight
i2c_master_write(get_backlight_level());
BACKLIT_DIRTY = false;
}
#endif
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
if (err) goto i2c_error;
// start of matrix stored at I2C_KEYMAP_START
err = i2c_master_write(I2C_KEYMAP_START);
if (err) goto i2c_error;
// Start read
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
if (err) goto i2c_error;
if (!err) {
int i;
for (i = 0; i < ROWS_PER_HAND-1; ++i) {
matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
}
matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
i2c_master_stop();
} else {
i2c_error: // the cable is disconnceted, or something else went wrong
i2c_reset_state();
return err;
}
#ifdef RGBLIGHT_ENABLE
if (RGB_DIRTY) {
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
if (err) goto i2c_error;
// RGB Location
err = i2c_master_write(I2C_RGB_START);
if (err) goto i2c_error;
uint32_t dword = eeconfig_read_rgblight();
// Write RGB
err = i2c_master_write_data(&dword, 4);
if (err) goto i2c_error;
RGB_DIRTY = false;
i2c_master_stop();
}
#endif
return 0;
}
#else // USE_SERIAL
int serial_transaction(void) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
if (serial_update_buffers()) {
return 1;
}
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = serial_slave_buffer[i];
}
#ifdef RGBLIGHT_ENABLE
// Code to send RGB over serial goes here (not implemented yet)
#endif
#ifdef BACKLIGHT_ENABLE
// Write backlight level for slave to read
serial_master_buffer[SERIAL_BACKLIT_START] = backlight_config.enable ? backlight_config.level : 0;
#endif
return 0;
}
#endif
uint8_t matrix_scan(void)
{
uint8_t ret = _matrix_scan();
#if defined(USE_I2C) || defined(EH)
if( i2c_transaction() ) {
#else // USE_SERIAL
if( serial_transaction() ) {
#endif
error_count++;
if (error_count > ERROR_DISCONNECT_COUNT) {
// reset other half if disconnected
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = 0;
}
}
} else {
error_count = 0;
}
matrix_scan_quantum();
return ret;
}
void matrix_slave_scan(void) {
_matrix_scan();
int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
#if defined(USE_I2C) || defined(EH)
for (int i = 0; i < ROWS_PER_HAND; ++i) {
i2c_slave_buffer[I2C_KEYMAP_START+i] = matrix[offset+i];
}
#else // USE_SERIAL
for (int i = 0; i < ROWS_PER_HAND; ++i) {
serial_slave_buffer[i] = matrix[offset+i];
}
#endif
matrix_slave_scan_user();
}
bool matrix_is_modified(void)
{
if (debouncing) return false;
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
#if (DIODE_DIRECTION == COL2ROW)
static void init_cols(void)
{
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
uint8_t pin = col_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
{
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[current_row];
// Clear data in matrix row
current_matrix[current_row] = 0;
// Select row and wait for row selecton to stabilize
select_row(current_row);
wait_us(30);
// For each col...
for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
// Select the col pin to read (active low)
uint8_t pin = col_pins[col_index];
uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
// Populate the matrix row with the state of the col pin
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
}
// Unselect row
unselect_row(current_row);
return (last_row_value != current_matrix[current_row]);
}
static void select_row(uint8_t row)
{
uint8_t pin = row_pins[row];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}
static void unselect_row(uint8_t row)
{
uint8_t pin = row_pins[row];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
static void unselect_rows(void)
{
for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
uint8_t pin = row_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
#elif (DIODE_DIRECTION == ROW2COL)
static void init_rows(void)
{
for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
uint8_t pin = row_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
{
bool matrix_changed = false;
// Select col and wait for col selecton to stabilize
select_col(current_col);
wait_us(30);
// For each row...
for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++)
{
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[row_index];
// Check row pin state
if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
{
// Pin LO, set col bit
current_matrix[row_index] |= (ROW_SHIFTER << current_col);
}
else
{
// Pin HI, clear col bit
current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
}
// Determine if the matrix changed state
if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
{
matrix_changed = true;
}
}
// Unselect col
unselect_col(current_col);
return matrix_changed;
}
static void select_col(uint8_t col)
{
uint8_t pin = col_pins[col];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}
static void unselect_col(uint8_t col)
{
uint8_t pin = col_pins[col];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
static void unselect_cols(void)
{
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
uint8_t pin = col_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
#elif (DIODE_DIRECTION == CUSTOM_MATRIX)
static void init_cols_rows(void)
{
for(int row = 0; row < MATRIX_ROWS; row++) {
for(int col = 0; col < MATRIX_COLS; col++) {
uint8_t pin = row_col_pins[row][col];
if(pin == NO_PIN) {
continue;
}
// DDxn set 0 for input
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF);
// PORTxn set 1 for input/pullup
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF);
}
}
}
static bool read_cols(matrix_row_t current_matrix[], uint8_t current_row)
{
matrix_row_t last_row_value = current_matrix[current_row];
current_matrix[current_row] = 0;
for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
uint8_t pin = row_col_pins[current_row][col_index];
if(pin == NO_PIN) {
current_matrix[current_row] |= 0;
}
else {
uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
}
}
return (last_row_value != current_matrix[current_row]);
}
#endif