kmk_firmware/kmk/internal_state.py

420 lines
14 KiB
Python

import logging
import sys
from kmk import kmktime
from kmk.consts import DiodeOrientation, LeaderMode, UnicodeModes
from kmk.event_defs import (HID_REPORT_EVENT, INIT_FIRMWARE_EVENT,
KEY_DOWN_EVENT, KEY_UP_EVENT, KEYCODE_DOWN_EVENT,
KEYCODE_UP_EVENT, MACRO_COMPLETE_EVENT,
NEW_MATRIX_EVENT, PENDING_KEYCODE_POP_EVENT)
from kmk.keycodes import FIRST_KMK_INTERNAL_KEYCODE, Keycodes, RawKeycodes
GESC_TRIGGERS = {
Keycodes.Modifiers.KC_LSHIFT, Keycodes.Modifiers.KC_RSHIFT,
Keycodes.Modifiers.KC_LGUI, Keycodes.Modifiers.KC_RGUI,
}
class Store:
'''
A data store very loosely inspired by Redux, but with most of the fancy
functional and immutable abilities unavailable because microcontrollers.
This serves as the event dispatcher at the heart of KMK. All changes to the
state of the keyboard should be triggered by events (see event_defs.py)
dispatched through this store, and listened to (for side-effects or other
handling) by subscription functions.
'''
def __init__(self, reducer, log_level=logging.NOTSET):
self.reducer = reducer
self.logger = logging.getLogger(__name__)
self.logger.setLevel(log_level)
self.state = self.reducer(logger=self.logger)
self.callbacks = []
def dispatch(self, action):
if self.state.preserve_intermediate_states:
self.state._oldstates.append(repr(self.state.to_dict(verbose=True)))
if callable(action):
self.logger.debug('Received thunk')
action(self.dispatch, self.get_state)
self.logger.debug('Finished thunk')
return None
self.logger.debug('Dispatching action: Type {} >> {}'.format(action.type, action))
self.state = self.reducer(self.state, action, logger=self.logger)
self.logger.debug('Dispatching complete: Type {}'.format(action.type))
self.logger.debug('New state: {}'.format(self.state))
for cb in self.callbacks:
if cb is not None:
try:
cb(self.state, action)
except Exception as e:
self.logger.error('Callback failed, moving on')
sys.print_exception(e)
def get_state(self):
return self.state
def subscribe(self, callback):
self.callbacks.append(callback)
return len(self.callbacks) - 1
def unsubscribe(self, idx):
self.callbacks[idx] = None
class InternalState:
keys_pressed = set()
pending_keys = set()
macro_pending = None
leader_pending = None
leader_last_len = 0
hid_pending = False
keymap = []
row_pins = []
col_pins = []
matrix = []
diode_orientation = DiodeOrientation.COLUMNS
leader_mode_history = []
active_layers = [0]
start_time = {
'lt': None,
'tg': None,
'tt': None,
'lm': None,
'leader': None,
}
_oldstates = []
def __init__(self, preserve_intermediate_states=False):
import kmk_keyboard_user
self.unicode_mode = getattr(kmk_keyboard_user, 'unicode_mode', UnicodeModes.NOOP)
self.tap_time = getattr(kmk_keyboard_user, 'tap_time', 300)
self.leader_mode = getattr(kmk_keyboard_user, 'leader_mode', LeaderMode.ENTER)
self.leader_dictionary = getattr(kmk_keyboard_user, 'leader_dictionary', {})
self.preserve_intermediate_states = preserve_intermediate_states
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
pass
def to_dict(self, verbose=False):
ret = {
'keys_pressed': self.keys_pressed,
'active_layers': self.active_layers,
'unicode_mode': self.unicode_mode,
'tap_time': self.tap_time,
'leader_mode_history': self.leader_mode_history,
'start_time': self.start_time,
}
if verbose:
ret.update({
'keymap': self.keymap,
'matrix': self.matrix,
'col_pins': self.col_pins,
'row_pins': self.row_pins,
'diode_orientation': self.diode_orientation,
})
return ret
def __repr__(self):
return 'InternalState({})'.format(self.to_dict())
def find_key_in_map(state, row, col):
# Later-added layers have priority. Sift through the layers
# in reverse order until we find a valid keycode object
for layer in reversed(state.active_layers):
layer_key = state.keymap[layer][row][col]
if not layer_key or layer_key == Keycodes.KMK.KC_TRNS:
continue
if layer_key == Keycodes.KMK.KC_NO:
break
return layer_key
def kmk_reducer(state=None, action=None, logger=None):
if state is None:
state = InternalState()
if logger is not None:
logger.debug('Reducer received state of None, creating new')
if action is None:
if logger is not None:
logger.debug('No action received, returning state unmodified')
return state
if action.type == NEW_MATRIX_EVENT:
matrix_keys_pressed = {
find_key_in_map(state, row, col)
for row, col, in action.matrix
}
pressed = matrix_keys_pressed - state.keys_pressed
released = state.keys_pressed - matrix_keys_pressed
if not pressed and not released:
return state
for changed_key in released:
if not changed_key:
continue
elif changed_key.code >= FIRST_KMK_INTERNAL_KEYCODE:
state = process_internal_key_event(
state,
KEY_UP_EVENT,
changed_key,
logger=logger,
)
for changed_key in pressed:
if not changed_key:
continue
elif changed_key.code >= FIRST_KMK_INTERNAL_KEYCODE:
state = process_internal_key_event(
state,
KEY_DOWN_EVENT,
changed_key,
logger=logger,
)
state.matrix = action.matrix
state.keys_pressed |= pressed
state.keys_pressed -= released
if state.leader_mode % 2 == 1:
state.hid_pending = False
else:
state.hid_pending = True
return state
if action.type == KEYCODE_UP_EVENT:
state.keys_pressed.discard(action.keycode)
return state
if action.type == KEYCODE_DOWN_EVENT:
state.keys_pressed.add(action.keycode)
return state
if action.type == INIT_FIRMWARE_EVENT:
state.keymap = action.keymap
state.row_pins = action.row_pins
state.col_pins = action.col_pins
state.diode_orientation = action.diode_orientation
return state
# HID events are non-mutating, used exclusively for listeners to know
# they should be doing things. This could/should arguably be folded back
# into KEY_UP_EVENT and KEY_DOWN_EVENT, but for now it's nice to separate
# this out for debugging's sake.
if action.type == HID_REPORT_EVENT:
return state
if action.type == MACRO_COMPLETE_EVENT:
state.macro_pending = None
return state
if action.type == PENDING_KEYCODE_POP_EVENT:
state.pending_keys.pop()
return state
# On unhandled events, log and do not mutate state
logger.warning('Unhandled event! Returning state unmodified.')
return state
def process_internal_key_event(state, action_type, changed_key, logger=None):
if logger is None:
logger = logging.getLogger(__name__)
# Since the key objects can be chained into new objects
# with, for example, no_press set, always check against
# the underlying code rather than comparing Keycode
# objects
if changed_key.code == RawKeycodes.KC_DF:
return df(state, action_type, changed_key, logger=logger)
elif changed_key.code == RawKeycodes.KC_MO:
return mo(state, action_type, changed_key, logger=logger)
elif changed_key.code == RawKeycodes.KC_LM:
return lm(state, action_type, changed_key, logger=logger)
elif changed_key.code == RawKeycodes.KC_LT:
return lt(state, action_type, changed_key, logger=logger)
elif changed_key.code == RawKeycodes.KC_TG:
return tg(state, action_type, changed_key, logger=logger)
elif changed_key.code == RawKeycodes.KC_TO:
return to(state, action_type, changed_key, logger=logger)
elif changed_key.code == RawKeycodes.KC_TT:
return tt(state, action_type, changed_key, logger=logger)
elif changed_key.code == Keycodes.KMK.KC_GESC.code:
return grave_escape(state, action_type, logger=logger)
elif changed_key.code == RawKeycodes.KC_UC_MODE:
return unicode_mode(state, action_type, changed_key, logger=logger)
elif changed_key.code == RawKeycodes.KC_MACRO:
return macro(state, action_type, changed_key, logger=logger)
elif changed_key.code == Keycodes.KMK.KC_LEAD.code:
return leader(state)
else:
return state
def grave_escape(state, action_type, logger):
if action_type == KEY_DOWN_EVENT:
if any(key in GESC_TRIGGERS for key in state.keys_pressed):
# if Shift is held, KC_GRAVE will become KC_TILDE on OS level
state.keys_pressed.add(Keycodes.Common.KC_GRAVE)
return state
# else return KC_ESC
state.keys_pressed.add(Keycodes.Common.KC_ESCAPE)
return state
elif action_type == KEY_UP_EVENT:
state.keys_pressed.discard(Keycodes.Common.KC_ESCAPE)
state.keys_pressed.discard(Keycodes.Common.KC_GRAVE)
return state
return state
def df(state, action_type, changed_key, logger):
"""Switches the default layer"""
if action_type == KEY_DOWN_EVENT:
state.active_layers[0] = changed_key.layer
return state
def mo(state, action_type, changed_key, logger):
"""Momentarily activates layer, switches off when you let go"""
if action_type == KEY_UP_EVENT:
state.active_layers = [
layer for layer in state.active_layers
if layer != changed_key.layer
]
elif action_type == KEY_DOWN_EVENT:
state.active_layers.append(changed_key.layer)
return state
def lm(state, action_type, changed_key, logger):
"""As MO(layer) but with mod active"""
if action_type == KEY_DOWN_EVENT:
# Sets the timer start and acts like MO otherwise
state.start_time['lm'] = kmktime.ticks_ms()
state.keys_pressed.add(changed_key.kc)
state = mo(state, action_type, changed_key, logger)
elif action_type == KEY_UP_EVENT:
state.keys_pressed.discard(changed_key.kc)
state.start_time['lm'] = None
state = mo(state, action_type, changed_key)
return state
def lt(state, action_type, changed_key, logger):
"""Momentarily activates layer if held, sends kc if tapped"""
if action_type == KEY_DOWN_EVENT:
# Sets the timer start and acts like MO otherwise
state.start_time['lt'] = kmktime.ticks_ms()
state = mo(state, action_type, changed_key, logger)
elif action_type == KEY_UP_EVENT:
# On keyup, check timer, and press key if needed.
if state.start_time['lt'] and (
kmktime.ticks_diff(kmktime.ticks_ms(), state.start_time['lt']) < state.tap_time
):
state.pending_keys.add(changed_key.kc)
state.start_time['lt'] = None
state = mo(state, action_type, changed_key, logger)
return state
def tg(state, action_type, changed_key, logger):
"""Toggles the layer (enables it if not active, and vise versa)"""
if action_type == KEY_DOWN_EVENT:
if changed_key.layer in state.active_layers:
state.active_layers = [
layer for layer in state.active_layers
if layer != changed_key.layer
]
else:
state.active_layers.append(changed_key.layer)
return state
def to(state, action_type, changed_key, logger):
"""Activates layer and deactivates all other layers"""
if action_type == KEY_DOWN_EVENT:
state.active_layers = [changed_key.layer]
return state
def tt(state, action_type, changed_key, logger):
"""Momentarily activates layer if held, toggles it if tapped repeatedly"""
# TODO Make this work with tap dance to function more correctly, but technically works.
if action_type == KEY_DOWN_EVENT:
if state.start_time['tt'] is None:
# Sets the timer start and acts like MO otherwise
state.start_time['tt'] = kmktime.ticks_ms()
state = mo(state, action_type, changed_key, logger)
elif kmktime.ticks_diff(kmktime.ticks_ms(), state.start_time['tt']) < state.tap_time:
state.start_time['tt'] = None
state = tg(state, action_type, changed_key, logger)
elif action_type == KEY_UP_EVENT and (
state.start_time['tt'] is None or
kmktime.ticks_diff(kmktime.ticks_ms(), state.start_time['tt']) >= state.tap_time
):
# On first press, works like MO. On second press, does nothing unless let up within
# time window, then acts like TG.
state.start_time['tt'] = None
state = mo(state, action_type, changed_key, logger)
return state
def unicode_mode(state, action_type, changed_key, logger):
if action_type == KEY_DOWN_EVENT:
state.unicode_mode = changed_key.mode
return state
def macro(state, action_type, changed_key, logger):
if action_type == KEY_UP_EVENT:
if changed_key.keyup:
state.macro_pending = changed_key.keyup
return state
elif action_type == KEY_DOWN_EVENT:
if changed_key.keydown:
state.macro_pending = changed_key.keydown
return state
return state
def leader(state):
if state.leader_mode % 2 == 0:
state.keys_pressed.discard(Keycodes.KMK.KC_LEAD)
# All leader modes are one number higher when activating
state.leader_mode += 1
return state