kmk_firmware/kmk/firmware.py
2019-07-12 15:16:33 -07:00

317 lines
9.8 KiB
Python

# Welcome to RAM and stack size hacks central, I'm your host, klardotsh!
# We really get stuck between a rock and a hard place on CircuitPython
# sometimes: our import structure is deeply nested enough that stuff
# breaks in some truly bizarre ways, including:
# - explicit RuntimeError exceptions, complaining that our
# stack depth is too deep
#
# - silent hard locks of the device (basically unrecoverable without
# UF2 flash if done in main.py, fixable with a reboot if done
# in REPL)
#
# However, there's a hackaround that works for us! Because sys.modules
# caches everything it sees (and future imports will use that cached
# copy of the module), let's take this opportunity _way_ up the import
# chain to import _every single thing_ KMK eventually uses in a normal
# workflow, in order from fewest to least nested dependencies.
# First, system-provided deps
import busio # isort:skip
import collections # isort:skip
import gc # isort:skip
import supervisor # isort:skip
# Now "light" KMK stuff with few/no external deps
import kmk.consts # isort:skip
import kmk.kmktime # isort:skip
import kmk.types # isort:skip
import kmk.util # isort:skip
from kmk.consts import LeaderMode, UnicodeMode # isort:skip
from kmk.hid import USB_HID # isort:skip
from kmk.internal_state import InternalState # isort:skip
from kmk.keys import KC # isort:skip
from kmk.matrix import MatrixScanner # isort:skip
# Now handlers that will be used in keys later
import kmk.handlers.layers # isort:skip
import kmk.handlers.stock # isort:skip
# Now stuff that depends on the above (and so on)
import kmk.keys # isort:skip
import kmk.matrix # isort:skip
import kmk.hid # isort:skip
import kmk.internal_state # isort:skip
# GC runs automatically after CircuitPython imports. If we ever go back to
# supporting MicroPython, we'll need a GC here (and probably after each
# chunk of the above)
# Thanks for sticking around. Now let's do real work, starting below
from kmk.util import intify_coordinate as ic
class Firmware:
debug_enabled = False
keymap = None
coord_mapping = None
row_pins = None
col_pins = None
diode_orientation = None
matrix_scanner = MatrixScanner
unicode_mode = UnicodeMode.NOOP
tap_time = 300
leader_mode = LeaderMode.TIMEOUT
leader_dictionary = {}
leader_timeout = 1000
hid_helper = USB_HID
extra_data_pin = None
split_offsets = ()
split_flip = False
split_side = None
split_type = None
split_master_left = True
is_master = None
uart = None
uart_flip = True
uart_pin = None
def __init__(self):
# Attempt to sanely guess a coord_mapping if one is not provided
if not self.coord_mapping:
self.coord_mapping = []
rows_to_calc = len(self.row_pins)
cols_to_calc = len(self.col_pins)
if self.split_offsets:
rows_to_calc *= 2
cols_to_calc *= 2
for ridx in range(rows_to_calc):
for cidx in range(cols_to_calc):
self.coord_mapping.append(ic(ridx, cidx))
self._state = InternalState(self)
def __repr__(self):
return (
'Firmware('
'debug_enabled={} '
'keymap=truncated '
'coord_mapping=truncated '
'row_pins=truncated '
'col_pins=truncated '
'diode_orientation={} '
'matrix_scanner={} '
'unicode_mode={} '
'tap_time={} '
'leader_mode={} '
'leader_dictionary=truncated '
'leader_timeout={} '
'hid_helper={} '
'extra_data_pin={} '
'split_offsets={} '
'split_flip={} '
'split_side={} '
'split_type={} '
'split_master_left={} '
'is_master={} '
'uart={} '
'uart_flip={} '
'uart_pin={}'
')'
).format(
self.debug_enabled,
# self.keymap,
# self.coord_mapping,
# self.row_pins,
# self.col_pins,
self.diode_orientation,
self.matrix_scanner,
self.unicode_mode,
self.tap_time,
self.leader_mode,
# self.leader_dictionary,
self.leader_timeout,
self.hid_helper.__name__,
self.extra_data_pin,
self.split_offsets,
self.split_flip,
self.split_side,
self.split_type,
self.split_master_left,
self.is_master,
self.uart,
self.uart_flip,
self.uart_pin,
)
def _print_debug_cycle(self, init=False):
if self.debug_enabled:
if init:
print('KMKInit()')
print(self)
print(self._state)
print('GCStats(alloc={} free={})'.format(
gc.mem_alloc(),
gc.mem_free(),
))
def _send_hid(self):
self._hid_helper_inst.create_report(self._state.keys_pressed).send()
self._state.resolve_hid()
def _send_key(self, key):
if not getattr(key, 'no_press', None):
self._state.add_key(key)
self._send_hid()
if not getattr(key, 'no_release', None):
self._state.remove_key(key)
self._send_hid()
def _handle_matrix_report(self, update=None):
'''
Bulk processing of update code for each cycle
:param update:
'''
if update is not None:
self._state.matrix_changed(
update[0],
update[1],
update[2],
)
def _send_to_master(self, update):
if self.split_master_left:
update[1] += self.split_offsets[update[0]]
else:
update[1] -= self.split_offsets[update[0]]
if self.uart is not None:
self.uart.write(update)
def _receive_from_slave(self):
if self.uart is not None and self.uart.in_waiting > 0:
update = bytearray(self.uart.read(3))
# Built in debug mode switch
if update == b'DEB':
# TODO Pretty up output
print(self.uart.readline())
return None
return update
return None
def _send_debug(self, message):
'''
Prepends DEB and appends a newline to allow debug messages to
be detected and handled differently than typical keypresses.
:param message: Debug message
'''
if self.uart is not None:
self.uart.write('DEB')
self.uart.write(message, '\n')
def _master_half(self):
if self.is_master is not None:
return self.is_master
# Working around https://github.com/adafruit/circuitpython/issues/1769
try:
self._hid_helper_inst.create_report([]).send()
self.is_master = True
except OSError:
self.is_master = False
return self.is_master
def init_uart(self, pin, timeout=20):
if self._master_half():
return busio.UART(tx=None, rx=pin, timeout=timeout)
else:
return busio.UART(tx=pin, rx=None, timeout=timeout)
def go(self):
assert self.keymap, 'must define a keymap with at least one row'
assert self.row_pins, 'no GPIO pins defined for matrix rows'
assert self.col_pins, 'no GPIO pins defined for matrix columns'
assert self.diode_orientation is not None, 'diode orientation must be defined'
self._hid_helper_inst = self.hid_helper()
# Split keyboard Init
if self.split_flip and not self._master_half():
self.col_pins = list(reversed(self.col_pins))
if self.split_side == "Left":
self.split_master_left = self._master_half()
elif self.split_side == "Right":
self.split_master_left = not self._master_half()
if self.uart_pin is not None:
self.uart = self.init_uart(self.uart_pin)
self.matrix = self.matrix_scanner(
cols=self.col_pins,
rows=self.row_pins,
diode_orientation=self.diode_orientation,
rollover_cols_every_rows=getattr(self, 'rollover_cols_every_rows', None),
)
# Compile string leader sequences
for k, v in self.leader_dictionary.items():
if not isinstance(k, tuple):
new_key = tuple(KC[c] for c in k)
self.leader_dictionary[new_key] = v
for k, v in self.leader_dictionary.items():
if not isinstance(k, tuple):
del self.leader_dictionary[k]
self._print_debug_cycle(init=True)
while True:
state_changed = False
if self.split_type is not None and self._master_half:
update = self._receive_from_slave()
if update is not None:
self._handle_matrix_report(update)
state_changed = True
update = self.matrix.scan_for_changes()
if update is not None:
if self._master_half():
self._handle_matrix_report(update)
state_changed = True
else:
# This keyboard is a slave, and needs to send data to master
self._send_to_master(update)
if self._state.hid_pending:
self._send_hid()
old_timeouts_len = len(self._state.timeouts)
self._state.process_timeouts()
new_timeouts_len = len(self._state.timeouts)
if old_timeouts_len != new_timeouts_len:
state_changed = True
if self._state.hid_pending:
self._send_hid()
if state_changed:
self._print_debug_cycle()