# Welcome to RAM and stack size hacks central, I'm your host, klardotsh! # We really get stuck between a rock and a hard place on CircuitPython # sometimes: our import structure is deeply nested enough that stuff # breaks in some truly bizarre ways, including: # - explicit RuntimeError exceptions, complaining that our # stack depth is too deep # # - silent hard locks of the device (basically unrecoverable without # UF2 flash if done in main.py, fixable with a reboot if done # in REPL) # # However, there's a hackaround that works for us! Because sys.modules # caches everything it sees (and future imports will use that cached # copy of the module), let's take this opportunity _way_ up the import # chain to import _every single thing_ KMK eventually uses in a normal # workflow, in order from fewest to least nested dependencies. # First, stuff that has no dependencies, or only C/MPY deps import collections # isort:skip import kmk.consts # isort:skip import kmk.kmktime # isort:skip import kmk.types # isort:skip import kmk.util # isort:skip # Now handlers that will be used in keys later import kmk.handlers.layers import kmk.handlers.stock # Now stuff that depends on the above (and so on) import kmk.keys # isort:skip import kmk.matrix # isort:skip import kmk.hid # isort:skip import kmk.internal_state # isort:skip # GC runs automatically after CircuitPython imports. If we ever go back to # supporting MicroPython, we'll need a GC here (and probably after each # chunk of the above) # Thanks for sticking around. Now let's do real work, starting below import busio import gc import supervisor from kmk.consts import LeaderMode, UnicodeMode from kmk.hid import USB_HID from kmk.internal_state import InternalState from kmk.keys import KC from kmk.matrix import MatrixScanner class Firmware: debug_enabled = False keymap = None row_pins = None col_pins = None diode_orientation = None unicode_mode = UnicodeMode.NOOP tap_time = 300 leader_mode = LeaderMode.TIMEOUT leader_dictionary = {} leader_timeout = 1000 hid_helper = USB_HID extra_data_pin = None split_offsets = () split_flip = False split_side = None split_type = None split_master_left = True is_master = None uart = None uart_flip = True uart_pin = None def __init__(self): self._state = InternalState(self) def _send_hid(self): self._hid_helper_inst.create_report(self._state.keys_pressed).send() self._state.resolve_hid() def _send_key(self, key): if not getattr(key, 'no_press', None): self._state.add_key(key) self._send_hid() if not getattr(key, 'no_release', None): self._state.remove_key(key) self._send_hid() def _handle_matrix_report(self, update=None): ''' Bulk processing of update code for each cycle :param update: ''' if update is not None: self._state.matrix_changed( update[0], update[1], update[2], ) def _send_to_master(self, update): if self.split_master_left: update[1] += self.split_offsets[update[0]] else: update[1] -= self.split_offsets[update[0]] if self.uart is not None: self.uart.write(update) def _receive_from_slave(self): if self.uart is not None and self.uart.in_waiting > 0: update = bytearray(self.uart.read(3)) # Built in debug mode switch if update == b'DEB': # TODO Pretty up output print(self.uart.readline()) return None return update return None def _send_debug(self, message): ''' Prepends DEB and appends a newline to allow debug messages to be detected and handled differently than typical keypresses. :param message: Debug message ''' if self.uart is not None: self.uart.write('DEB') self.uart.write(message, '\n') def _master_half(self): if self.is_master is not None: return self.is_master return supervisor.runtime.serial_connected def init_uart(self, pin, timeout=20): if self._master_half(): return busio.UART(tx=None, rx=pin, timeout=timeout) else: return busio.UART(tx=pin, rx=None, timeout=timeout) def go(self): assert self.keymap, 'must define a keymap with at least one row' assert self.row_pins, 'no GPIO pins defined for matrix rows' assert self.col_pins, 'no GPIO pins defined for matrix columns' assert self.diode_orientation is not None, 'diode orientation must be defined' # Split keyboard Init if self.split_flip and not self._master_half(): self.col_pins = list(reversed(self.col_pins)) if self.split_side == "Left": self.split_master_left = self._master_half() elif self.split_side == "Right": self.split_master_left = not self._master_half() if self.uart_pin is not None: self.uart = self.init_uart(self.uart_pin) self.matrix = MatrixScanner( cols=self.col_pins, rows=self.row_pins, diode_orientation=self.diode_orientation, rollover_cols_every_rows=getattr(self, 'rollover_cols_every_rows', None), swap_indicies=getattr(self, 'swap_indicies', None), ) self._hid_helper_inst = self.hid_helper() # Compile string leader sequences for k, v in self.leader_dictionary.items(): if not isinstance(k, tuple): new_key = tuple(KC[c] for c in k) self.leader_dictionary[new_key] = v del self.leader_dictionary[k] if self.debug_enabled: print("Firin' lazers. Keyboard is booted.") while True: state_changed = False if self.split_type is not None and self._master_half: update = self._receive_from_slave() if update is not None: self._handle_matrix_report(update) state_changed = True update = self.matrix.scan_for_changes() if update is not None: if self._master_half(): self._handle_matrix_report(update) state_changed = True else: # This keyboard is a slave, and needs to send data to master self._send_to_master(update) if self._state.hid_pending: self._send_hid() old_timeouts_len = len(self._state.timeouts) self._state.process_timeouts() new_timeouts_len = len(self._state.timeouts) if old_timeouts_len != new_timeouts_len: state_changed = True if self.debug_enabled and state_changed: print('New State: {}'.format(self._state._to_dict())) gc.collect()