import logging import sys from kmk import kmktime from kmk.consts import DiodeOrientation, LeaderMode, UnicodeModes from kmk.event_defs import (HID_REPORT_EVENT, INIT_FIRMWARE_EVENT, KEY_DOWN_EVENT, KEY_UP_EVENT, KEYCODE_DOWN_EVENT, KEYCODE_UP_EVENT, MACRO_COMPLETE_EVENT, NEW_MATRIX_EVENT, PENDING_KEYCODE_POP_EVENT) from kmk.keycodes import FIRST_KMK_INTERNAL_KEYCODE, Keycodes, RawKeycodes GESC_TRIGGERS = { Keycodes.Modifiers.KC_LSHIFT, Keycodes.Modifiers.KC_RSHIFT, Keycodes.Modifiers.KC_LGUI, Keycodes.Modifiers.KC_RGUI, } class Store: ''' A data store very loosely inspired by Redux, but with most of the fancy functional and immutable abilities unavailable because microcontrollers. This serves as the event dispatcher at the heart of KMK. All changes to the state of the keyboard should be triggered by events (see event_defs.py) dispatched through this store, and listened to (for side-effects or other handling) by subscription functions. ''' def __init__(self, reducer, log_level=logging.NOTSET): self.reducer = reducer self.logger = logging.getLogger(__name__) self.logger.setLevel(log_level) self.state = self.reducer(logger=self.logger) self.callbacks = [] def dispatch(self, action): if self.state.preserve_intermediate_states: self.state._oldstates.append(repr(self.state.to_dict(verbose=True))) if callable(action): self.logger.debug('Received thunk') action(self.dispatch, self.get_state) self.logger.debug('Finished thunk') return None self.logger.debug('Dispatching action: Type {} >> {}'.format(action.type, action)) self.state = self.reducer(self.state, action, logger=self.logger) self.logger.debug('Dispatching complete: Type {}'.format(action.type)) self.logger.debug('New state: {}'.format(self.state)) for cb in self.callbacks: if cb is not None: try: cb(self.state, action) except Exception as e: self.logger.error('Callback failed, moving on') sys.print_exception(e) def get_state(self): return self.state def subscribe(self, callback): self.callbacks.append(callback) return len(self.callbacks) - 1 def unsubscribe(self, idx): self.callbacks[idx] = None class InternalState: keys_pressed = set() pending_keys = set() macro_pending = None leader_pending = None leader_last_len = 0 hid_pending = False keymap = [] row_pins = [] col_pins = [] matrix = [] diode_orientation = DiodeOrientation.COLUMNS leader_mode_history = [] active_layers = [0] start_time = { 'lt': None, 'tg': None, 'tt': None, 'lm': None, 'leader': None, } _oldstates = [] def __init__(self, preserve_intermediate_states=False): import kmk_keyboard_user self.unicode_mode = getattr(kmk_keyboard_user, 'unicode_mode', UnicodeModes.NOOP) self.tap_time = getattr(kmk_keyboard_user, 'tap_time', 300) self.leader_mode = getattr(kmk_keyboard_user, 'leader_mode', LeaderMode.Enter) self.LEADER_DICTIONARY = getattr(kmk_keyboard_user, 'LEADER_DICTIONARY', {}) self.preserve_intermediate_states = preserve_intermediate_states def __enter__(self): return self def __exit__(self, type, value, traceback): pass def to_dict(self, verbose=False): ret = { 'keys_pressed': self.keys_pressed, 'active_layers': self.active_layers, 'unicode_mode': self.unicode_mode, 'tap_time': self.tap_time, 'leader_mode_history': self.leader_mode_history, 'start_time': self.start_time, } if verbose: ret.update({ 'keymap': self.keymap, 'matrix': self.matrix, 'col_pins': self.col_pins, 'row_pins': self.row_pins, 'diode_orientation': self.diode_orientation, }) return ret def __repr__(self): return 'InternalState({})'.format(self.to_dict()) def find_key_in_map(state, row, col): # Later-added layers have priority. Sift through the layers # in reverse order until we find a valid keycode object for layer in reversed(state.active_layers): layer_key = state.keymap[layer][row][col] if not layer_key or layer_key == Keycodes.KMK.KC_TRNS: continue if layer_key == Keycodes.KMK.KC_NO: break return layer_key def kmk_reducer(state=None, action=None, logger=None): if state is None: state = InternalState() if logger is not None: logger.debug('Reducer received state of None, creating new') if action is None: if logger is not None: logger.debug('No action received, returning state unmodified') return state if action.type == NEW_MATRIX_EVENT: matrix_keys_pressed = { find_key_in_map(state, row, col) for row, col, in action.matrix } pressed = matrix_keys_pressed - state.keys_pressed released = state.keys_pressed - matrix_keys_pressed if not pressed and not released: return state for changed_key in released: if not changed_key: continue elif changed_key.code >= FIRST_KMK_INTERNAL_KEYCODE: state = process_internal_key_event( state, KEY_UP_EVENT, changed_key, logger=logger, ) for changed_key in pressed: if not changed_key: continue elif changed_key.code >= FIRST_KMK_INTERNAL_KEYCODE: state = process_internal_key_event( state, KEY_DOWN_EVENT, changed_key, logger=logger, ) state.matrix = action.matrix state.keys_pressed |= pressed state.keys_pressed -= released if state.leader_mode % 2 == 1: state.hid_pending = False else: state.hid_pending = True return state if action.type == KEYCODE_UP_EVENT: state.keys_pressed.discard(action.keycode) return state if action.type == KEYCODE_DOWN_EVENT: state.keys_pressed.add(action.keycode) return state if action.type == INIT_FIRMWARE_EVENT: state.keymap = action.keymap state.row_pins = action.row_pins state.col_pins = action.col_pins state.diode_orientation = action.diode_orientation return state # HID events are non-mutating, used exclusively for listeners to know # they should be doing things. This could/should arguably be folded back # into KEY_UP_EVENT and KEY_DOWN_EVENT, but for now it's nice to separate # this out for debugging's sake. if action.type == HID_REPORT_EVENT: return state if action.type == MACRO_COMPLETE_EVENT: state.macro_pending = None return state if action.type == PENDING_KEYCODE_POP_EVENT: state.pending_keys.pop() return state # On unhandled events, log and do not mutate state logger.warning('Unhandled event! Returning state unmodified.') return state def process_internal_key_event(state, action_type, changed_key, logger=None): if logger is None: logger = logging.getLogger(__name__) # Since the key objects can be chained into new objects # with, for example, no_press set, always check against # the underlying code rather than comparing Keycode # objects if changed_key.code == RawKeycodes.KC_DF: return df(state, action_type, changed_key, logger=logger) elif changed_key.code == RawKeycodes.KC_MO: return mo(state, action_type, changed_key, logger=logger) elif changed_key.code == RawKeycodes.KC_LM: return lm(state, action_type, changed_key, logger=logger) elif changed_key.code == RawKeycodes.KC_LT: return lt(state, action_type, changed_key, logger=logger) elif changed_key.code == RawKeycodes.KC_TG: return tg(state, action_type, changed_key, logger=logger) elif changed_key.code == RawKeycodes.KC_TO: return to(state, action_type, changed_key, logger=logger) elif changed_key.code == RawKeycodes.KC_TT: return tt(state, action_type, changed_key, logger=logger) elif changed_key.code == Keycodes.KMK.KC_GESC.code: return grave_escape(state, action_type, logger=logger) elif changed_key.code == RawKeycodes.KC_UC_MODE: return unicode_mode(state, action_type, changed_key, logger=logger) elif changed_key.code == RawKeycodes.KC_MACRO: return macro(state, action_type, changed_key, logger=logger) elif changed_key.code == Keycodes.KMK.KC_LEAD.code: return leader(state) else: return state def grave_escape(state, action_type, logger): if action_type == KEY_DOWN_EVENT: if any(key in GESC_TRIGGERS for key in state.keys_pressed): # if Shift is held, KC_GRAVE will become KC_TILDE on OS level state.keys_pressed.add(Keycodes.Common.KC_GRAVE) return state # else return KC_ESC state.keys_pressed.add(Keycodes.Common.KC_ESCAPE) return state elif action_type == KEY_UP_EVENT: state.keys_pressed.discard(Keycodes.Common.KC_ESCAPE) state.keys_pressed.discard(Keycodes.Common.KC_GRAVE) return state return state def df(state, action_type, changed_key, logger): """Switches the default layer""" if action_type == KEY_DOWN_EVENT: state.active_layers[0] = changed_key.layer return state def mo(state, action_type, changed_key, logger): """Momentarily activates layer, switches off when you let go""" if action_type == KEY_UP_EVENT: state.active_layers = [ layer for layer in state.active_layers if layer != changed_key.layer ] elif action_type == KEY_DOWN_EVENT: state.active_layers.append(changed_key.layer) return state def lm(state, action_type, changed_key, logger): """As MO(layer) but with mod active""" if action_type == KEY_DOWN_EVENT: # Sets the timer start and acts like MO otherwise state.start_time['lm'] = kmktime.ticks_ms() state.keys_pressed.add(changed_key.kc) state = mo(state, action_type, changed_key, logger) elif action_type == KEY_UP_EVENT: state.keys_pressed.discard(changed_key.kc) state.start_time['lm'] = None state = mo(state, action_type, changed_key) return state def lt(state, action_type, changed_key, logger): """Momentarily activates layer if held, sends kc if tapped""" if action_type == KEY_DOWN_EVENT: # Sets the timer start and acts like MO otherwise state.start_time['lt'] = kmktime.ticks_ms() state = mo(state, action_type, changed_key, logger) elif action_type == KEY_UP_EVENT: # On keyup, check timer, and press key if needed. if state.start_time['lt'] and ( kmktime.ticks_diff(kmktime.ticks_ms(), state.start_time['lt']) < state.tap_time ): state.pending_keys.add(changed_key.kc) state.start_time['lt'] = None state = mo(state, action_type, changed_key, logger) return state def tg(state, action_type, changed_key, logger): """Toggles the layer (enables it if not active, and vise versa)""" if action_type == KEY_DOWN_EVENT: if changed_key.layer in state.active_layers: state.active_layers = [ layer for layer in state.active_layers if layer != changed_key.layer ] else: state.active_layers.append(changed_key.layer) return state def to(state, action_type, changed_key, logger): """Activates layer and deactivates all other layers""" if action_type == KEY_DOWN_EVENT: state.active_layers = [changed_key.layer] return state def tt(state, action_type, changed_key, logger): """Momentarily activates layer if held, toggles it if tapped repeatedly""" # TODO Make this work with tap dance to function more correctly, but technically works. if action_type == KEY_DOWN_EVENT: if state.start_time['tt'] is None: # Sets the timer start and acts like MO otherwise state.start_time['tt'] = kmktime.ticks_ms() state = mo(state, action_type, changed_key, logger) elif kmktime.ticks_diff(kmktime.ticks_ms(), state.start_time['tt']) < state.tap_time: state.start_time['tt'] = None state = tg(state, action_type, changed_key, logger) elif action_type == KEY_UP_EVENT and ( state.start_time['tt'] is None or kmktime.ticks_diff(kmktime.ticks_ms(), state.start_time['tt']) >= state.tap_time ): # On first press, works like MO. On second press, does nothing unless let up within # time window, then acts like TG. state.start_time['tt'] = None state = mo(state, action_type, changed_key, logger) return state def unicode_mode(state, action_type, changed_key, logger): if action_type == KEY_DOWN_EVENT: state.unicode_mode = changed_key.mode return state def macro(state, action_type, changed_key, logger): if action_type == KEY_UP_EVENT: if changed_key.keyup: state.macro_pending = changed_key.keyup return state elif action_type == KEY_DOWN_EVENT: if changed_key.keydown: state.macro_pending = changed_key.keydown return state return state def leader(state): if state.leader_mode % 2 == 0: state.keys_pressed.discard(Keycodes.KMK.KC_LEAD) # All leader modes are one number higher when activating state.leader_mode += 1 return state