Merge Encoder and NewEncoder. Enhance missteps handling

This commit is contained in:
elric91
2021-10-09 17:18:17 +02:00
committed by Kyle Brown
parent d9fb351448
commit ed68ddb79d
3 changed files with 309 additions and 266 deletions

View File

@@ -1,172 +1,121 @@
import digitalio
from supervisor import ticks_ms
# See docs/encoder.md for how to use
import digitalio
from supervisor import ticks_ms
from kmk.modules import Module
class EncoderPadState:
OFF = False
ON = True
class EndcoderDirection:
Left = False
Right = True
# NB : not using rotaryio as it requires the pins to be consecutive
class Encoder:
def __init__(
self,
pad_a,
pad_b,
button_pin=None,
):
self.pad_a = self.PreparePin(pad_a) # board pin for enc pin a
self.pad_a_state = False
self.pad_b = self.PreparePin(pad_b) # board pin for enc pin b
self.pad_b_state = False
self.button_pin = self.PreparePin(button_pin) # board pin for enc btn
self.button_state = None # state of pushbutton on encoder if enabled
self.encoder_value = 0 # clarify what this value is
self.encoder_state = (
self.pad_a_state,
self.pad_b_state,
) # quaderature encoder state
self.encoder_direction = None # arbitrary, tells direction of knob
self.last_encoder_state = None # not used yet
self.resolution = 2 # number of keys sent per position change
self.revolution_count = 20 # position changes per revolution
self.has_button = False # enable/disable button functionality
self.encoder_data = None # 6tuple containing all encoder data
self.position_change = None # revolution count, inc/dec as knob turns
self.last_encoder_value = 0 # not used
self.is_inverted = False # switch to invert knob direction
self.vel_mode = False # enable the velocity output
self.vel_ts = None # velocity timestamp
self.last_vel_ts = 0 # last velocity timestamp
self.encoder_speed = None # ms per position change(4 states)
self.encoder_map = None
self.eps = EncoderPadState()
self.encoder_pad_lookup = {
False: self.eps.OFF,
True: self.eps.ON,
}
self.edr = EndcoderDirection() # lookup for current encoder direction
self.encoder_dir_lookup = {
False: self.edr.Left,
True: self.edr.Right,
}
def __repr__(self, idx):
return 'ENCODER_{}({})'.format(idx, self._to_dict())
VELOCITY_MODE = True
def _to_dict(self):
def __init__(self, pin_a, pin_b, pin_button=None, is_inverted=False):
self.pin_a = EncoderPin(pin_a)
self.pin_b = EncoderPin(pin_b)
self.pin_button = EncoderPin(pin_button, button_type=True)
self.is_inverted = is_inverted
self._state = (self.pin_a.get_value(), self.pin_b.get_value())
self._direction = None
self._pos = 0
self._button_state = True
self._velocity = 0
self._movement = 0
self._timestamp = ticks_ms()
# callback functions on events. Need to be defined externally
self.on_move_do = None
self.on_button_do = None
def get_state(self):
return {
'Encoder_State': self.encoder_state,
'Direction': self.encoder_direction,
'Value': self.encoder_value,
'Position_Change': self.position_change,
'Speed': self.encoder_speed,
'Button_State': self.button_state,
'direction': self.is_inverted and -self._direction or self._direction,
'position': self.is_inverted and -self._pos or self._pos,
'is_pressed': not self._button_state,
'velocity': self._velocity,
}
# adapted for CircuitPython from raspi
def PreparePin(self, num):
if num is not None:
pad = digitalio.DigitalInOut(num)
pad.direction = digitalio.Direction.INPUT
pad.pull = digitalio.Pull.UP
return pad
else:
return None
# Called in a loop to refresh encoder state
def update_state(self):
# Rotation events
new_state = (self.pin_a.get_value(), self.pin_b.get_value())
# checks encoder pins, reports encoder data
def report(self):
new_encoder_state = (
self.encoder_pad_lookup[int(self.pad_a.value)],
self.encoder_pad_lookup[int(self.pad_b.value)],
)
if new_state != self._state:
# it moves !
self._movement += 1
# false / false and true / true are common half steps
# looking on the step just before helps determining
# the direction
if new_state[0] == new_state[1] and self._state[0] != self._state[1]:
if new_state[1] == self._state[0]:
self._direction = 1
else:
self._direction = -1
if self.encoder_state == (self.eps.ON, self.eps.ON): # Resting position
if new_encoder_state == (self.eps.ON, self.eps.OFF): # Turned right 1
self.encoder_direction = self.edr.Right
elif new_encoder_state == (self.eps.OFF, self.eps.ON): # Turned left 1
self.encoder_direction = self.edr.Left
elif self.encoder_state == (self.eps.ON, self.eps.OFF): # R1 or L3 position
if new_encoder_state == (self.eps.OFF, self.eps.OFF): # Turned right 1
self.encoder_direction = self.edr.Right
elif new_encoder_state == (self.eps.ON, self.eps.ON): # Turned left 1
if self.encoder_direction == self.edr.Left:
self.encoder_value = self.encoder_value - 1
elif self.encoder_state == (self.eps.OFF, self.eps.ON): # R3 or L1
if new_encoder_state == (self.eps.OFF, self.eps.OFF): # Turned left 1
self.encoder_direction = self.edr.Left
elif new_encoder_state == (self.eps.ON, self.eps.ON): # Turned right 1
if self.encoder_direction == self.edr.Right:
self.encoder_value = self.encoder_value + 1
else: # self.encoder_state == '11'
if new_encoder_state == (self.eps.ON, self.eps.OFF): # Turned left 1
self.encoder_direction = self.edr.Left
elif new_encoder_state == (self.eps.OFF, self.eps.ON): # Turned right 1
self.encoder_direction = self.edr.Right # 'R'
elif new_encoder_state == (
self.eps.ON,
self.eps.ON,
): # Skipped intermediate 01 or 10 state, however turn completed
if self.encoder_direction == self.edr.Left:
self.encoder_value = self.encoder_value - 1
elif self.encoder_direction == self.edr.Right:
self.encoder_value = self.encoder_value + 1
# when the encoder settles on a position (every 2 steps)
if new_state == (True, True):
if self._movement > 2:
# 1 full step is 4 movements, however, when rotated quickly,
# some steps may be missed. This makes it behaves more
# naturally
real_movement = round(self._movement / 4)
self._pos += self._direction * real_movement
if self.on_move_do is not None:
for i in range(real_movement):
self.on_move_do(self.get_state())
# Reinit to properly identify new movement
self._movement = 0
self._direction = 0
self.encoder_state = new_encoder_state
self._state = new_state
if self.vel_mode:
self.vel_ts = ticks_ms()
# Velocity
if VELOCITY_MODE:
new_timestamp = ticks_ms()
self._velocity = new_timestamp - self._timestamp
self._timestamp = new_timestamp
if self.encoder_state != self.last_encoder_state:
self.position_change = self.invert_rotation(
self.encoder_value, self.last_encoder_value
)
# Button events
new_button_state = self.pin_button.get_value()
if new_button_state != self._button_state:
self._button_state = new_button_state
if self.on_button_do is not None:
self.on_button_do(self.get_state())
self.last_encoder_state = self.encoder_state
self.last_encoder_value = self.encoder_value
if self.position_change > 0:
self._to_dict()
# return self.increment_key
return 0
elif self.position_change < 0:
self._to_dict()
# return self.decrement_key
return 1
else:
return None
# invert knob direction if encoder pins are soldered backwards
def invert_rotation(self, new, old):
if self.is_inverted:
return -(new - old)
else:
return new - old
# returns knob velocity as milliseconds between position changes(detents)
# returnd knob velocity as milliseconds between position changes (detents)
# for backwards compatibility
def vel_report(self):
self.encoder_speed = self.vel_ts - self.last_vel_ts
self.last_vel_ts = self.vel_ts
return self.encoder_speed
print(self._velocity)
return self._velocity
class EncoderPin:
def __init__(self, pin, button_type=False):
self.pin = pin
self.button_type = button_type
self.prepare_pin()
def prepare_pin(self):
if self.pin is not None:
self.io = digitalio.DigitalInOut(self.pin)
self.io.direction = digitalio.Direction.INPUT
self.io.pull = digitalio.Pull.UP
else:
self.io = None
def get_value(self):
return self.io.value
class EncoderHandler(Module):
encoders = []
debug_enabled = False # not working as inttended, do not use for now
def __init__(self, pad_a, pad_b, encoder_map):
self.pad_a = pad_a
self.pad_b = pad_b
self.encoder_count = len(self.pad_a)
self.encoder_map = encoder_map
self.make_encoders()
def __init__(self):
self.encoders = []
self.pins = None
self.map = None
def on_runtime_enable(self, keyboard):
return
@@ -175,13 +124,41 @@ class EncoderHandler(Module):
return
def during_bootup(self, keyboard):
if self.pins and self.map:
for idx, pins in enumerate(self.pins):
gpio_pins = pins[:3]
new_encoder = Encoder(*gpio_pins)
# In our case, we need to define keybord and encoder_id for callbacks
new_encoder.on_move_do = lambda x: self.on_move_do(keyboard, idx, x)
new_encoder.on_button_do = lambda x: self.on_button_do(keyboard, idx, x)
self.encoders.append(new_encoder)
return
def on_move_do(self, keyboard, encoder_id, state):
if self.map:
layer_id = keyboard.active_layers[0]
# if Left, key index 0 else key index 1
if state['direction'] == -1:
key_index = 0
else:
key_index = 1
key = self.map[layer_id][encoder_id][key_index]
keyboard.tap_key(key)
def on_button_do(self, keyboard, encoder_id, state):
if state['is_pressed'] is True:
layer_id = keyboard.active_layers[0]
key = self.map[layer_id][encoder_id][2]
keyboard.tap_key(key)
def before_matrix_scan(self, keyboard):
'''
Return value will be injected as an extra matrix update
'''
return self.get_reports(keyboard)
for encoder in self.encoders:
encoder.update_state()
return keyboard
def after_matrix_scan(self, keyboard):
'''
@@ -200,31 +177,3 @@ class EncoderHandler(Module):
def on_powersave_disable(self, keyboard):
return
def make_encoders(self):
for i in range(self.encoder_count):
self.encoders.append(
Encoder(
self.pad_a[i], # encoder pin a
self.pad_b[i], # encoder pin b
)
)
def send_encoder_keys(self, keyboard, encoder_key, encoder_idx):
# position in the encoder map tuple
encoder_resolution = 2
for _ in range(
self.encoder_map[keyboard.active_layers[0]][encoder_idx][encoder_resolution]
):
keyboard.tap_key(
self.encoder_map[keyboard.active_layers[0]][encoder_idx][encoder_key]
)
return keyboard
def get_reports(self, keyboard):
for idx in range(self.encoder_count):
if self.debug_enabled: # not working as inttended, do not use for now
print(self.encoders[idx].__repr__(idx))
encoder_key = self.encoders[idx].report()
if encoder_key is not None:
return self.send_encoder_keys(keyboard, encoder_key, idx)

View File

@@ -19,6 +19,7 @@
import digitalio
from kmk.kmktime import tick_ms
from kmk.modules import Module
# NB : not using rotaryio as it requires the pins to be consecutive
@@ -26,9 +27,7 @@ from kmk.modules import Module
class Encoder:
_debug = False
_debug_counter = 0
VELOCITY_MODE = True
STATES = {
# old_pos_a, old_pos_b, new_pos_a, new_pos_b
# -1 : Left ; 1 : Right ; 0 : we don't care
@@ -52,11 +51,14 @@ class Encoder:
self.pin_button = EncoderPin(pin_button, button_type=True)
self.is_inverted = is_inverted
self._actual_state = (self.pin_a.get_value(), self.pin_b.get_value())
self._actual_direction = None
self._actual_pos = 0
self._actual_button_state = True
self._movement_counter = 0
self._state = (self.pin_a.get_value(), self.pin_b.get_value())
self._direction = None
self._pos = 0
self._button_state = True
self._velocity = 0
self._movement = 0
self._timestamp = tick_ms()
# callback functions on events. Need to be defined externally
self.on_move_do = None
@@ -65,45 +67,59 @@ class Encoder:
def get_state(self):
return {
'direction': self.is_inverted
and -self._actual_direction
or self._actual_direction,
'position': self.is_inverted and -self._actual_pos or self._actual_pos,
'is_pressed': not self._actual_button_state,
and -self._direction
or self._direction,
'position': self.is_inverted and -self._pos or self._pos,
'is_pressed': not self._button_state,
'velocity': self.velocity
}
# to be called in a loop
# Called in a loop to refresh encoder state
def update_state(self):
# Rotation events
new_state = (self.pin_a.get_value(), self.pin_b.get_value())
if new_state != self._actual_state:
if self._debug:
print(' ', new_state)
self._movement_counter += 1
new_direction = self.STATES[(self._actual_state, new_state)]
if new_state != self._state:
self._movement += 1
new_direction = self.STATES[(self._state, new_state)]
if new_direction != 0:
self._actual_direction = new_direction
self._direction = new_direction
# when the encoder settles on a position
# when the encoder settles on a position (every 2 steps)
if (
new_state == (True, True) and self._movement_counter > 2
new_state == (True, True) and self._movement > 2
): # if < 2 state changes, it is a misstep
self._movement_counter = 0
self._actual_pos += self._actual_direction
if self._debug:
self._debug_counter += 1
print(self._debug_counter, self.get_state())
self._movement = 0
self._pos += self._direction
if self.on_move_do is not None:
self.on_move_do(self.get_state())
self._actual_state = new_state
self._state = new_state
# Velocity
if VELOCITY_MODE:
new_timestamp = tick_ms()
self._velocity = new_timestamp - self._timestamp
self._timestamp = new_timestamp
# Button events
new_button_state = self.pin_button.get_value()
if new_button_state != self._actual_button_state:
self._actual_button_state = new_button_state
if new_button_state != self._button_state:
self._button_state = new_button_state
if self.on_button_do is not None:
self.on_button_do(self.get_state())
# returnd knob velocity as milliseconds between position changes (detents)
def vel_report(self):
return self._velocity
# callback for actions on move (set up externally)
def on_move_do(self, :
return
# callback for actions on button press (set up externally)
def on_button_do:
return
class EncoderPin:
def __init__(self, pin, button_type=False):
@@ -140,7 +156,7 @@ class EncoderHandler(Module):
for idx, pins in enumerate(self.pins):
gpio_pins = pins[:3]
new_encoder = Encoder(*gpio_pins)
# In our case, we need to fix keybord and encoder_id for the callback
# In our case, we need to define keybord and encoder_id for callbacks
new_encoder.on_move_do = lambda x: self.on_move_do(keyboard, idx, x)
new_encoder.on_button_do = lambda x: self.on_button_do(keyboard, idx, x)
self.encoders.append(new_encoder)