Initial attempt to merge internal_state with kmk_keyboard. Seems to work on Plank so far

This commit is contained in:
Josh Klar
2019-07-28 17:09:58 -07:00
parent ea327f8f76
commit 9821f7bcc3
15 changed files with 879 additions and 812 deletions

View File

@@ -9,10 +9,3 @@ class UnicodeMode:
LINUX = IBUS = 1
MACOS = OSX = RALT = 2
WINC = 3
class LeaderMode:
TIMEOUT = 0
TIMEOUT_ACTIVE = 1
ENTER = 2
ENTER_ACTIVE = 3

View File

@@ -0,0 +1,42 @@
class InvalidExtensionEnvironment(Exception):
pass
class Extension:
_enabled = True
def enable(self, keyboard):
self._enabled = True
self.on_runtime_enable(self, keyboard)
def disable(self, keyboard):
self._enabled = False
self.on_runtime_disable(self, keyboard)
# The below methods should be implemented by subclasses
def on_runtime_enable(self, keyboard):
pass
def on_runtime_disable(self, keyboard):
pass
def during_bootup(self, keyboard):
pass
def before_matrix_scan(self, keyboard):
'''
Return value will be injected as an extra matrix update
'''
pass
def after_matrix_scan(self, keyboard, matrix_update):
pass
def before_hid_send(self, keyboard):
pass
def after_hid_send(self, keyboard):
pass

111
kmk/extensions/leader.py Normal file
View File

@@ -0,0 +1,111 @@
import gc
from kmk.extensions import Extension, InvalidExtensionEnvironment
from kmk.handlers.stock import passthrough as handler_passthrough
from kmk.keys import KC, make_key
class LeaderMode:
TIMEOUT = 0
TIMEOUT_ACTIVE = 1
ENTER = 2
ENTER_ACTIVE = 3
class Leader(Extension):
def __init__(self, mode=LeaderMode.TIMEOUT, timeout=1000, sequences=None):
if sequences is None:
raise InvalidExtensionEnvironment(
'sequences must be a dictionary, not None'
)
self._mode = mode
self._timeout = timeout
self._sequences = self._compile_sequences(sequences)
self._leader_pending = None
self._assembly_last_len = 0
self._sequence_assembly = []
make_key(
names=('LEADER', 'LEAD'),
on_press=self._key_leader_pressed,
on_release=handler_passthrough,
)
gc.collect()
def after_matrix_scan(self, keyboard_state, *args):
if self._mode % 2 == 1:
keys_pressed = keyboard_state._keys_pressed
if self._assembly_last_len and self._sequence_assembly:
history_set = set(self._sequence_assembly)
keys_pressed = keys_pressed - history_set
self._assembly_last_len = len(keyboard_state._keys_pressed)
for key in keys_pressed:
if self._mode == LeaderMode.ENTER_ACTIVE and key == KC.ENT:
self._handle_leader_sequence(keyboard_state)
break
elif key == KC.ESC or key == KC.GESC:
# Clean self and turn leader mode off.
self._exit_leader_mode(keyboard_state)
break
elif key == KC.LEAD:
break
else:
# Add key if not needing to escape
# This needs replaced later with a proper debounce
self._sequence_assembly.append(key)
keyboard_state._hid_pending = False
def _compile_sequences(self, sequences):
gc.collect()
for k, v in sequences.items():
if not isinstance(k, tuple):
new_key = tuple(KC[c] for c in k)
sequences[new_key] = v
for k, v in sequences.items():
if not isinstance(k, tuple):
del sequences[k]
gc.collect()
return sequences
def _handle_leader_sequence(self, keyboard_state):
lmh = tuple(self._sequence_assembly)
# Will get caught in infinite processing loops if we don't
# exit leader mode before processing the target key
self._exit_leader_mode(keyboard_state)
if lmh in self._sequences:
# Stack depth exceeded if try to use add_key here with a unicode sequence
keyboard_state._process_key(self._sequences[lmh], True)
keyboard_state._set_timeout(
False, lambda: keyboard_state._remove_key(self._sequences[lmh])
)
def _exit_leader_mode(self, keyboard_state):
self._sequence_assembly.clear()
self._mode -= 1
self._assembly_last_len = 0
keyboard_state._keys_pressed.clear()
def _key_leader_pressed(self, key, keyboard_state, *args, **kwargs):
if self._mode % 2 == 0:
keyboard_state._keys_pressed.discard(key)
# All leader modes are one number higher when activating
self._mode += 1
if self._mode == LeaderMode.TIMEOUT_ACTIVE:
keyboard_state._set_timeout(
self._timeout, lambda: self._handle_leader_sequence(keyboard_state)
)

103
kmk/extensions/split.py Normal file
View File

@@ -0,0 +1,103 @@
import busio
import gc
from kmk.extensions import Extension
from kmk.kmktime import sleep_ms
from kmk.matrix import intify_coordinate
class SplitType:
UART = 1
I2C = 2 # unused
ONEWIRE = 3 # unused
BLE = 4 # unused
class Split(Extension):
def __init__(
self,
extra_data_pin=None,
offsets=(),
flip=False,
side=None,
stype=None,
master_left=True,
uart_flip=True,
uart_pin=None,
uart_timeout=20,
):
self.extra_data_pin = extra_data_pin
self.split_offsets = offsets
self.split_flip = flip
self.split_side = side
self.split_type = stype
self.split_master_left = master_left
self._uart = None
self.uart_flip = uart_flip
self.uart_pin = uart_pin
self.uart_timeout = uart_timeout
def during_bootup(self, keyboard):
if self.split_type is not None:
try:
# Working around https://github.com/adafruit/circuitpython/issues/1769
keyboard._hid_helper_inst.create_report([]).send()
self._is_master = True
# Sleep 2s so master portion doesn't "appear" to boot quicker than
# dependent portions (which will take ~2s to time out on the HID send)
sleep_ms(2000)
except OSError:
self._is_master = False
if self.split_flip and not self._is_master:
keyboard.col_pins = list(reversed(self.col_pins))
if self.split_side == 'Left':
self.split_master_left = self._is_master
elif self.split_side == 'Right':
self.split_master_left = not self._is_master
else:
self._is_master = True
if self.uart_pin is not None:
if self._is_master:
self._uart = busio.UART(
tx=None, rx=self.uart_pin, timeout=self.uart_timeout
)
else:
self._uart = busio.UART(
tx=self.uart_pin, rx=None, timeout=self.uart_timeout
)
# Attempt to sanely guess a coord_mapping if one is not provided.
if not keyboard.coord_mapping:
keyboard.coord_mapping = []
rows_to_calc = len(keyboard.row_pins)
cols_to_calc = len(keyboard.col_pins)
if self.split_offsets:
rows_to_calc *= 2
cols_to_calc *= 2
for ridx in range(rows_to_calc):
for cidx in range(cols_to_calc):
keyboard.coord_mapping.append(intify_coordinate(ridx, cidx))
gc.collect()
def before_matrix_scan(self, keyboard_state):
if self.split_type is not None and self._is_master:
return self._receive_from_slave()
def after_matrix_scan(self, keyboard_state, matrix_update):
if matrix_update is not None and not self._is_master:
self._send_to_master(matrix_update)
def _send_to_master(self, update):
if self.split_master_left:
update[1] += self.split_offsets[update[0]]
else:
update[1] -= self.split_offsets[update[0]]
if self._uart is not None:
self._uart.write(update)

View File

@@ -5,7 +5,7 @@ def df_pressed(key, state, *args, **kwargs):
'''
Switches the default layer
'''
state.active_layers[-1] = key.meta.layer
state._active_layers[-1] = key.meta.layer
return state
@@ -13,7 +13,7 @@ def mo_pressed(key, state, *args, **kwargs):
'''
Momentarily activates layer, switches off when you let go
'''
state.active_layers.insert(0, key.meta.layer)
state._active_layers.insert(0, key.meta.layer)
return state
@@ -27,8 +27,8 @@ def mo_released(key, state, KC, *args, **kwargs):
# triggered by MO() and then defaulting to the MO()'s layer
# would result in no layers active
try:
del_idx = state.active_layers.index(key.meta.layer)
del state.active_layers[del_idx]
del_idx = state._active_layers.index(key.meta.layer)
del state._active_layers[del_idx]
except ValueError:
pass
@@ -39,10 +39,10 @@ def lm_pressed(key, state, *args, **kwargs):
'''
As MO(layer) but with mod active
'''
state.hid_pending = True
state._hid_pending = True
# Sets the timer start and acts like MO otherwise
state.start_time['lm'] = ticks_ms()
state.keys_pressed.add(key.meta.kc)
state._start_time['lm'] = ticks_ms()
state._keys_pressed.add(key.meta.kc)
return mo_pressed(key, state, *args, **kwargs)
@@ -50,28 +50,28 @@ def lm_released(key, state, *args, **kwargs):
'''
As MO(layer) but with mod active
'''
state.hid_pending = True
state.keys_pressed.discard(key.meta.kc)
state.start_time['lm'] = None
state._hid_pending = True
state._keys_pressed.discard(key.meta.kc)
state._start_time['lm'] = None
return mo_released(key, state, *args, **kwargs)
def lt_pressed(key, state, *args, **kwargs):
# Sets the timer start and acts like MO otherwise
state.start_time['lt'] = ticks_ms()
state._start_time['lt'] = ticks_ms()
return mo_pressed(key, state, *args, **kwargs)
def lt_released(key, state, *args, **kwargs):
# On keyup, check timer, and press key if needed.
if state.start_time['lt'] and (
ticks_diff(ticks_ms(), state.start_time['lt']) < state.config.tap_time
if state._start_time['lt'] and (
ticks_diff(ticks_ms(), state._start_time['lt']) < state.tap_time
):
state.hid_pending = True
state.tap_key(key.meta.kc)
state._hid_pending = True
state._tap_key(key.meta.kc)
mo_released(key, state, *args, **kwargs)
state.start_time['lt'] = None
state._start_time['lt'] = None
return state
@@ -81,10 +81,10 @@ def tg_pressed(key, state, *args, **kwargs):
'''
# See mo_released for implementation details around this
try:
del_idx = state.active_layers.index(key.meta.layer)
del state.active_layers[del_idx]
del_idx = state._active_layers.index(key.meta.layer)
del state._active_layers[del_idx]
except ValueError:
state.active_layers.insert(0, key.meta.layer)
state._active_layers.insert(0, key.meta.layer)
return state
@@ -93,8 +93,8 @@ def to_pressed(key, state, *args, **kwargs):
'''
Activates layer and deactivates all other layers
'''
state.active_layers.clear()
state.active_layers.insert(0, key.meta.layer)
state._active_layers.clear()
state._active_layers.insert(0, key.meta.layer)
return state
@@ -104,23 +104,21 @@ def tt_pressed(key, state, *args, **kwargs):
Momentarily activates layer if held, toggles it if tapped repeatedly
'''
# TODO Make this work with tap dance to function more correctly, but technically works.
if state.start_time['tt'] is None:
if state._start_time['tt'] is None:
# Sets the timer start and acts like MO otherwise
state.start_time['tt'] = ticks_ms()
state._start_time['tt'] = ticks_ms()
return mo_pressed(key, state, *args, **kwargs)
elif ticks_diff(ticks_ms(), state.start_time['tt']) < state.config.tap_time:
state.start_time['tt'] = None
elif ticks_diff(ticks_ms(), state._start_time['tt']) < state.tap_time:
state._start_time['tt'] = None
return tg_pressed(key, state, *args, **kwargs)
def tt_released(key, state, *args, **kwargs):
tap_timed_out = (
ticks_diff(ticks_ms(), state.start_time['tt']) >= state.config.tap_time
)
if state.start_time['tt'] is None or tap_timed_out:
tap_timed_out = ticks_diff(ticks_ms(), state._start_time['tt']) >= state.tap_time
if state._start_time['tt'] is None or tap_timed_out:
# On first press, works like MO. On second press, does nothing unless let up within
# time window, then acts like TG.
state.start_time['tt'] = None
state._start_time['tt'] = None
return mo_released(key, state, *args, **kwargs)
return state

View File

@@ -3,21 +3,21 @@ from kmk.kmktime import ticks_diff, ticks_ms
def mt_pressed(key, state, *args, **kwargs):
# Sets the timer start and acts like a modifier otherwise
state.keys_pressed.add(key.meta.mods)
state._keys_pressed.add(key.meta.mods)
state.start_time['mod_tap'] = ticks_ms()
state._start_time['mod_tap'] = ticks_ms()
return state
def mt_released(key, state, *args, **kwargs):
# On keyup, check timer, and press key if needed.
state.keys_pressed.discard(key.meta.mods)
state._keys_pressed.discard(key.meta.mods)
timer_name = 'mod_tap'
if state.start_time[timer_name] and (
ticks_diff(ticks_ms(), state.start_time[timer_name]) < state.config.tap_time
if state._start_time[timer_name] and (
ticks_diff(ticks_ms(), state._start_time[timer_name]) < state.tap_time
):
state.hid_pending = True
state.tap_key(key.meta.kc)
state._hid_pending = True
state._tap_key(key.meta.kc)
state.start_time[timer_name] = None
state._start_time[timer_name] = None
return state

View File

@@ -12,18 +12,18 @@ def get_wide_ordinal(char):
def sequence_press_handler(key, state, KC, *args, **kwargs):
old_keys_pressed = state.keys_pressed
state.keys_pressed = set()
old_keys_pressed = state._keys_pressed
state._keys_pressed = set()
for ikey in key.meta.seq:
if not getattr(ikey, 'no_press', None):
state.process_key(ikey, True)
state.config._send_hid()
state._process_key(ikey, True)
state._send_hid()
if not getattr(ikey, 'no_release', None):
state.process_key(ikey, False)
state.config._send_hid()
state._process_key(ikey, False)
state._send_hid()
state.keys_pressed = old_keys_pressed
state._keys_pressed = old_keys_pressed
return state
@@ -103,16 +103,16 @@ def unicode_codepoint_sequence(codepoints):
kc_macros = [simple_key_sequence(kc_seq) for kc_seq in kc_seqs]
def _unicode_sequence(key, state, *args, **kwargs):
if state.config.unicode_mode == UnicodeMode.IBUS:
state.process_key(
if state.unicode_mode == UnicodeMode.IBUS:
state._process_key(
simple_key_sequence(_ibus_unicode_sequence(kc_macros, state)), True
)
elif state.config.unicode_mode == UnicodeMode.RALT:
state.process_key(
elif state.unicode_mode == UnicodeMode.RALT:
state._process_key(
simple_key_sequence(_ralt_unicode_sequence(kc_macros, state)), True
)
elif state.config.unicode_mode == UnicodeMode.WINC:
state.process_key(
elif state.unicode_mode == UnicodeMode.WINC:
state._process_key(
simple_key_sequence(_winc_unicode_sequence(kc_macros, state)), True
)

View File

@@ -6,23 +6,23 @@ def passthrough(key, state, *args, **kwargs):
def default_pressed(key, state, KC, coord_int=None, coord_raw=None):
state.hid_pending = True
state._hid_pending = True
if coord_int is not None:
state.coord_keys_pressed[coord_int] = key
state._coord_keys_pressed[coord_int] = key
state.keys_pressed.add(key)
state._keys_pressed.add(key)
return state
def default_released(key, state, KC, coord_int=None, coord_raw=None):
state.hid_pending = True
state.keys_pressed.discard(key)
state._hid_pending = True
state._keys_pressed.discard(key)
if coord_int is not None:
state.keys_pressed.discard(state.coord_keys_pressed.get(coord_int, None))
state.coord_keys_pressed[coord_int] = None
state._keys_pressed.discard(state._coord_keys_pressed.get(coord_int, None))
state._coord_keys_pressed[coord_int] = None
return state
@@ -53,12 +53,12 @@ def bootloader(*args, **kwargs):
def debug_pressed(key, state, KC, *args, **kwargs):
if state.config.debug_enabled:
if state.debug_enabled:
print('DebugDisable()')
else:
print('DebugEnable()')
state.config.debug_enabled = not state.config.debug_enabled
state.debug_enabled = not state.debug_enabled
return state
@@ -66,48 +66,48 @@ def debug_pressed(key, state, KC, *args, **kwargs):
def gesc_pressed(key, state, KC, *args, **kwargs):
GESC_TRIGGERS = {KC.LSHIFT, KC.RSHIFT, KC.LGUI, KC.RGUI}
if GESC_TRIGGERS.intersection(state.keys_pressed):
if GESC_TRIGGERS.intersection(state._keys_pressed):
# First, release GUI if already pressed
state.config._send_hid()
state._send_hid()
# if Shift is held, KC_GRAVE will become KC_TILDE on OS level
state.keys_pressed.add(KC.GRAVE)
state.hid_pending = True
state._keys_pressed.add(KC.GRAVE)
state._hid_pending = True
return state
# else return KC_ESC
state.keys_pressed.add(KC.ESCAPE)
state.hid_pending = True
state._keys_pressed.add(KC.ESCAPE)
state._hid_pending = True
return state
def gesc_released(key, state, KC, *args, **kwargs):
state.keys_pressed.discard(KC.ESCAPE)
state.keys_pressed.discard(KC.GRAVE)
state.hid_pending = True
state._keys_pressed.discard(KC.ESCAPE)
state._keys_pressed.discard(KC.GRAVE)
state._hid_pending = True
return state
def bkdl_pressed(key, state, KC, *args, **kwargs):
BKDL_TRIGGERS = {KC.LGUI, KC.RGUI}
if BKDL_TRIGGERS.intersection(state.keys_pressed):
state.config._send_hid()
state.keys_pressed.add(KC.DEL)
state.hid_pending = True
if BKDL_TRIGGERS.intersection(state._keys_pressed):
state._send_hid()
state._keys_pressed.add(KC.DEL)
state._hid_pending = True
return state
# else return KC_ESC
state.keys_pressed.add(KC.BKSP)
state.hid_pending = True
state._keys_pressed.add(KC.BKSP)
state._hid_pending = True
return state
def bkdl_released(key, state, KC, *args, **kwargs):
state.keys_pressed.discard(KC.BKSP)
state.keys_pressed.discard(KC.DEL)
state.hid_pending = True
state._keys_pressed.discard(KC.BKSP)
state._keys_pressed.discard(KC.DEL)
state._hid_pending = True
return state
@@ -117,15 +117,11 @@ def sleep_pressed(key, state, KC, *args, **kwargs):
def uc_mode_pressed(key, state, *args, **kwargs):
state.config.unicode_mode = key.meta.mode
state.unicode_mode = key.meta.mode
return state
def leader_pressed(key, state, *args, **kwargs):
return state._begin_leader_mode()
def td_pressed(key, state, *args, **kwargs):
return state._process_tap_dance(key, True)
@@ -135,137 +131,83 @@ def td_released(key, state, *args, **kwargs):
def rgb_tog(key, state, *args, **kwargs):
if state.config.pixels.animation_mode == 'static_standby':
state.config.pixels.animation_mode = 'static'
state.config.pixels.enabled = not state.config.pixels.enabled
if state.pixels.animation_mode == 'static_standby':
state.pixels.animation_mode = 'static'
state.pixels.enabled = not state.pixels.enabled
return state
def rgb_hui(key, state, *args, **kwargs):
state.config.pixels.increase_hue()
state.pixels.increase_hue()
return state
def rgb_hud(key, state, *args, **kwargs):
state.config.pixels.decrease_hue()
state.pixels.decrease_hue()
return state
def rgb_sai(key, state, *args, **kwargs):
state.config.pixels.increase_sat()
state.pixels.increase_sat()
return state
def rgb_sad(key, state, *args, **kwargs):
state.config.pixels.decrease_sat()
state.pixels.decrease_sat()
return state
def rgb_vai(key, state, *args, **kwargs):
state.config.pixels.increase_val()
state.pixels.increase_val()
return state
def rgb_vad(key, state, *args, **kwargs):
state.config.pixels.decrease_val()
state.pixels.decrease_val()
return state
def rgb_ani(key, state, *args, **kwargs):
state.config.pixels.increase_ani()
state.pixels.increase_ani()
return state
def rgb_and(key, state, *args, **kwargs):
state.config.pixels.decrease_ani()
state.pixels.decrease_ani()
return state
def rgb_mode_static(key, state, *args, **kwargs):
state.config.pixels.effect_init = True
state.config.pixels.animation_mode = 'static'
state.pixels.effect_init = True
state.pixels.animation_mode = 'static'
return state
def rgb_mode_breathe(key, state, *args, **kwargs):
state.config.pixels.effect_init = True
state.config.pixels.animation_mode = 'breathing'
state.pixels.effect_init = True
state.pixels.animation_mode = 'breathing'
return state
def rgb_mode_breathe_rainbow(key, state, *args, **kwargs):
state.config.pixels.effect_init = True
state.config.pixels.animation_mode = 'breathing_rainbow'
state.pixels.effect_init = True
state.pixels.animation_mode = 'breathing_rainbow'
return state
def rgb_mode_rainbow(key, state, *args, **kwargs):
state.config.pixels.effect_init = True
state.config.pixels.animation_mode = 'rainbow'
state.pixels.effect_init = True
state.pixels.animation_mode = 'rainbow'
return state
def rgb_mode_swirl(key, state, *args, **kwargs):
state.config.pixels.effect_init = True
state.config.pixels.animation_mode = 'swirl'
state.pixels.effect_init = True
state.pixels.animation_mode = 'swirl'
return state
def rgb_mode_knight(key, state, *args, **kwargs):
state.config.pixels.effect_init = True
state.config.pixels.animation_mode = 'knight'
return state
def led_tog(key, state, *args, **kwargs):
if state.config.led.animation_mode == 'static_standby':
state.config.led.animation_mode = 'static'
state.config.led.enabled = not state.config.led.enabled
return state
def led_inc(key, state, *args, **kwargs):
state.config.led.increase_brightness()
return state
def led_dec(key, state, *args, **kwargs):
state.config.led.decrease_brightness()
return state
def led_ani(key, state, *args, **kwargs):
state.config.led.increase_ani()
return state
def led_and(key, state, *args, **kwargs):
state.config.led.decrease_ani()
return state
def led_mode_static(key, state, *args, **kwargs):
state.config.led.effect_init = True
state.config.led.animation_mode = 'static'
return state
def led_mode_breathe(key, state, *args, **kwargs):
state.config.led.effect_init = True
state.config.led.animation_mode = 'breathing'
return state
def bt_clear_bonds(key, state, *args, **kwargs):
state.config._hid_helper_inst.clear_bonds()
return state
def bt_next_conn(key, state, *args, **kwargs):
state.config._hid_helper_inst.next_connection()
return state
def bt_prev_conn(key, state, *args, **kwargs):
state.config._hid_helper_inst.previous_connection()
state.pixels.effect_init = True
state.pixels.animation_mode = 'knight'
return state

View File

@@ -1,290 +0,0 @@
from kmk.consts import LeaderMode
from kmk.keys import KC
from kmk.kmktime import ticks_ms
from kmk.matrix import intify_coordinate
from kmk.types import TapDanceKeyMeta
class InternalState:
keys_pressed = set()
coord_keys_pressed = {}
leader_pending = None
leader_last_len = 0
hid_pending = False
leader_mode_history = []
# this should almost always be PREpended to, replaces
# former use of reversed_active_layers which had pointless
# overhead (the underlying list was never used anyway)
active_layers = [0]
start_time = {'lt': None, 'tg': None, 'tt': None, 'lm': None, 'leader': None}
timeouts = {}
tapping = False
tap_dance_counts = {}
tap_side_effects = {}
def __init__(self, config):
self.config = config
def __repr__(self):
return (
'InternalState('
'keys_pressed={} '
'coord_keys_pressed={} '
'leader_pending={} '
'leader_last_len={} '
'hid_pending={} '
'leader_mode_history={} '
'active_layers={} '
'start_time={} '
'timeouts={} '
'tapping={} '
'tap_dance_counts={} '
'tap_side_effects={}'
')'
).format(
self.keys_pressed,
self.coord_keys_pressed,
self.leader_pending,
self.leader_last_len,
self.hid_pending,
self.leader_mode_history,
self.active_layers,
self.start_time,
self.timeouts,
self.tapping,
self.tap_dance_counts,
self.tap_side_effects,
)
def _find_key_in_map(self, row, col):
ic = intify_coordinate(row, col)
try:
idx = self.config.coord_mapping.index(ic)
except ValueError:
if self.config.debug_enabled:
print(
'CoordMappingNotFound(ic={}, row={}, col={})'.format(ic, row, col)
)
return None
for layer in self.active_layers:
layer_key = self.config.keymap[layer][idx]
if not layer_key or layer_key == KC.TRNS:
continue
if self.config.debug_enabled:
print('KeyResolution(key={})'.format(layer_key))
return layer_key
def set_timeout(self, after_ticks, callback):
if after_ticks is False:
# We allow passing False as an implicit "run this on the next process timeouts cycle"
timeout_key = ticks_ms()
else:
timeout_key = ticks_ms() + after_ticks
while timeout_key in self.timeouts:
timeout_key += 1
self.timeouts[timeout_key] = callback
return timeout_key
def cancel_timeout(self, timeout_key):
if timeout_key in self.timeouts:
del self.timeouts[timeout_key]
def process_timeouts(self):
if not self.timeouts:
return self
current_time = ticks_ms()
# cast this to a tuple to ensure that if a callback itself sets
# timeouts, we do not handle them on the current cycle
timeouts = tuple(self.timeouts.items())
for k, v in timeouts:
if k <= current_time:
v()
del self.timeouts[k]
return self
def matrix_changed(self, row, col, is_pressed):
if self.config.debug_enabled:
print('MatrixChange(col={} row={} pressed={})'.format(col, row, is_pressed))
int_coord = intify_coordinate(row, col)
kc_changed = self._find_key_in_map(row, col)
if kc_changed is None:
print('MatrixUndefinedCoordinate(col={} row={})'.format(col, row))
return self
return self.process_key(kc_changed, is_pressed, int_coord, (row, col))
def process_key(self, key, is_pressed, coord_int=None, coord_raw=None):
if self.tapping and not isinstance(key.meta, TapDanceKeyMeta):
self._process_tap_dance(key, is_pressed)
else:
if is_pressed:
key._on_press(self, coord_int, coord_raw)
else:
key._on_release(self, coord_int, coord_raw)
if self.config.leader_mode % 2 == 1:
self._process_leader_mode()
return self
def remove_key(self, keycode):
self.keys_pressed.discard(keycode)
return self.process_key(keycode, False)
def add_key(self, keycode):
self.keys_pressed.add(keycode)
return self.process_key(keycode, True)
def tap_key(self, keycode):
self.add_key(keycode)
# On the next cycle, we'll remove the key.
self.set_timeout(False, lambda: self.remove_key(keycode))
return self
def resolve_hid(self):
self.hid_pending = False
return self
def _process_tap_dance(self, changed_key, is_pressed):
if is_pressed:
if not isinstance(changed_key.meta, TapDanceKeyMeta):
# If we get here, changed_key is not a TapDanceKey and thus
# the user kept typing elsewhere (presumably). End ALL of the
# currently outstanding tap dance runs.
for k, v in self.tap_dance_counts.items():
if v:
self._end_tap_dance(k)
return self
if (
changed_key not in self.tap_dance_counts
or not self.tap_dance_counts[changed_key]
):
self.tap_dance_counts[changed_key] = 1
self.set_timeout(
self.config.tap_time, lambda: self._end_tap_dance(changed_key)
)
self.tapping = True
else:
self.tap_dance_counts[changed_key] += 1
if changed_key not in self.tap_side_effects:
self.tap_side_effects[changed_key] = None
else:
has_side_effects = self.tap_side_effects[changed_key] is not None
hit_max_defined_taps = self.tap_dance_counts[changed_key] == len(
changed_key.codes
)
if has_side_effects or hit_max_defined_taps:
self._end_tap_dance(changed_key)
return self
def _end_tap_dance(self, td_key):
v = self.tap_dance_counts[td_key] - 1
if v >= 0:
if td_key in self.keys_pressed:
key_to_press = td_key.codes[v]
self.add_key(key_to_press)
self.tap_side_effects[td_key] = key_to_press
self.hid_pending = True
else:
if self.tap_side_effects[td_key]:
self.remove_key(self.tap_side_effects[td_key])
self.tap_side_effects[td_key] = None
self.hid_pending = True
self._cleanup_tap_dance(td_key)
else:
self.tap_key(td_key.codes[v])
self._cleanup_tap_dance(td_key)
return self
def _cleanup_tap_dance(self, td_key):
self.tap_dance_counts[td_key] = 0
self.tapping = any(count > 0 for count in self.tap_dance_counts.values())
return self
def _begin_leader_mode(self):
if self.config.leader_mode % 2 == 0:
self.keys_pressed.discard(KC.LEAD)
# All leader modes are one number higher when activating
self.config.leader_mode += 1
if self.config.leader_mode == LeaderMode.TIMEOUT_ACTIVE:
self.set_timeout(
self.config.leader_timeout, self._handle_leader_sequence
)
return self
def _handle_leader_sequence(self):
lmh = tuple(self.leader_mode_history)
# Will get caught in infinite processing loops if we don't
# exit leader mode before processing the target key
self._exit_leader_mode()
if lmh in self.config.leader_dictionary:
# Stack depth exceeded if try to use add_key here with a unicode sequence
self.process_key(self.config.leader_dictionary[lmh], True)
self.set_timeout(
False, lambda: self.remove_key(self.config.leader_dictionary[lmh])
)
return self
def _process_leader_mode(self):
keys_pressed = self.keys_pressed
if self.leader_last_len and self.leader_mode_history:
history_set = set(self.leader_mode_history)
keys_pressed = keys_pressed - history_set
self.leader_last_len = len(self.keys_pressed)
for key in keys_pressed:
if self.config.leader_mode == LeaderMode.ENTER_ACTIVE and key == KC.ENT:
self._handle_leader_sequence()
break
elif key == KC.ESC or key == KC.GESC:
# Clean self and turn leader mode off.
self._exit_leader_mode()
break
elif key == KC.LEAD:
break
else:
# Add key if not needing to escape
# This needs replaced later with a proper debounce
self.leader_mode_history.append(key)
self.hid_pending = False
return self
def _exit_leader_mode(self):
self.leader_mode_history.clear()
self.config.leader_mode -= 1
self.leader_last_len = 0
self.keys_pressed.clear()
return self

View File

@@ -629,25 +629,6 @@ make_key(
make_key(names=('RGB_MODE_SWIRL', 'RGB_M_S'), on_press=handlers.rgb_mode_swirl)
make_key(names=('RGB_MODE_KNIGHT', 'RGB_M_K'), on_press=handlers.rgb_mode_knight)
make_key(names=('LED_TOG',), on_press=handlers.led_tog)
make_key(names=('LED_INC',), on_press=handlers.led_inc)
make_key(names=('LED_DEC',), on_press=handlers.led_dec)
make_key(names=('LED_ANI',), on_press=handlers.led_ani)
make_key(names=('LED_AND',), on_press=handlers.led_and)
make_key(names=('LED_MODE_PLAIN', 'LED_M_P'), on_press=handlers.led_mode_static)
make_key(names=('LED_MODE_BREATHE', 'LED_M_B'), on_press=handlers.led_mode_breathe)
make_key(names=('BT_CLEAR_BONDS', 'BT_CLR'), on_press=handlers.bt_clear_bonds)
make_key(names=('BT_NEXT_CONN', 'BT_NXT'), on_press=handlers.bt_next_conn)
make_key(names=('BT_PREV_CONN', 'BT_PRV'), on_press=handlers.bt_prev_conn)
make_key(
names=('LEADER', 'LEAD'),
on_press=handlers.leader_pressed,
on_release=handlers.passthrough,
)
# Layers
make_argumented_key(
validator=layer_key_validator,

View File

@@ -3,19 +3,20 @@
# a line into their keymaps.
import kmk.preload_imports # isort:skip # NOQA
import busio
import gc
from kmk import led, rgb
from kmk.consts import LeaderMode, UnicodeMode
from kmk.hid import AbstractHID, HIDModes
from kmk.internal_state import InternalState
from kmk import rgb
from kmk.consts import KMK_RELEASE, UnicodeMode
from kmk.hid import BLEHID, USBHID, AbstractHID, HIDModes
from kmk.keys import KC
from kmk.kmktime import sleep_ms
from kmk.matrix import MatrixScanner
from kmk.matrix import intify_coordinate as ic
from kmk.kmktime import ticks_ms
from kmk.matrix import MatrixScanner, intify_coordinate
from kmk.types import TapDanceKeyMeta
class KMKKeyboard:
#####
# User-configurable
debug_enabled = False
keymap = None
@@ -29,29 +30,27 @@ class KMKKeyboard:
unicode_mode = UnicodeMode.NOOP
tap_time = 300
leader_mode = LeaderMode.TIMEOUT
leader_dictionary = {}
leader_timeout = 1000
# Split config
extra_data_pin = None
split_offsets = ()
split_flip = False
target_side = None
split_type = None
split_target_left = True
is_target = None
uart = None
uart_flip = True
uart_pin = None
# RGB config
rgb_pixel_pin = None
rgb_config = rgb.rgb_config
# led config (mono color)
led_pin = None
led_config = led.led_config
#####
# Internal State
_keys_pressed = set()
_coord_keys_pressed = {}
_hid_pending = False
# this should almost always be PREpended to, replaces
# former use of reversed_active_layers which had pointless
# overhead (the underlying list was never used anyway)
_active_layers = [0]
_start_time = {'lt': None, 'tg': None, 'tt': None, 'lm': None}
_timeouts = {}
_tapping = False
_tap_dance_counts = {}
_tap_side_effects = {}
def __repr__(self):
return (
@@ -65,20 +64,16 @@ class KMKKeyboard:
'matrix_scanner={} '
'unicode_mode={} '
'tap_time={} '
'leader_mode={} '
'leader_dictionary=truncated '
'leader_timeout={} '
'hid_helper={} '
'extra_data_pin={} '
'split_offsets={} '
'split_flip={} '
'target_side={} '
'split_type={} '
'split_target_left={} '
'is_target={} '
'uart={} '
'uart_flip={} '
'uart_pin={}'
'keys_pressed={} '
'coord_keys_pressed={} '
'hid_pending={} '
'active_layers={} '
'start_time={} '
'timeouts={} '
'tapping={} '
'tap_dance_counts={} '
'tap_side_effects={}'
')'
).format(
self.debug_enabled,
@@ -90,51 +85,43 @@ class KMKKeyboard:
self.matrix_scanner,
self.unicode_mode,
self.tap_time,
self.leader_mode,
# self.leader_dictionary,
self.leader_timeout,
self.hid_helper.__name__,
self.extra_data_pin,
self.split_offsets,
self.split_flip,
self.target_side,
self.split_type,
self.split_target_left,
self.is_target,
self.uart,
self.uart_flip,
self.uart_pin,
# internal state
self._keys_pressed,
self._coord_keys_pressed,
self._hid_pending,
self._active_layers,
self._start_time,
self._timeouts,
self._tapping,
self._tap_dance_counts,
self._tap_side_effects,
)
def _print_debug_cycle(self, init=False):
pre_alloc = gc.mem_alloc()
pre_free = gc.mem_free()
if self.debug_enabled:
if init:
print('KMKInit(release={})'.format(KMK_RELEASE))
print(self)
print(self)
print(
'GCStats(pre_alloc={} pre_free={} alloc={} free={})'.format(
pre_alloc, pre_free, gc.mem_alloc(), gc.mem_free()
)
)
def _send_hid(self):
self._hid_helper_inst.create_report(self._state.keys_pressed).send()
self._state.resolve_hid()
def _send_key(self, key):
if not getattr(key, 'no_press', None):
self._state.add_key(key)
self._send_hid()
if not getattr(key, 'no_release', None):
self._state.remove_key(key)
self._send_hid()
self._hid_helper_inst.create_report(self._keys_pressed).send()
self._hid_pending = False
def _handle_matrix_report(self, update=None):
'''
Bulk processing of update code for each cycle
:param update:
'''
if update is not None:
self._state.matrix_changed(update[0], update[1], update[2])
def _send_to_target(self, update):
if self.split_target_left:
update[1] += self.split_offsets[update[0]]
else:
update[1] -= self.split_offsets[update[0]]
if self.uart is not None:
self.uart.write(update)
self._on_matrix_changed(update[0], update[1], update[2])
self.state_changed = True
def _receive_from_initiator(self):
if self.uart is not None and self.uart.in_waiting > 0 or self.uart_buffer:
@@ -144,14 +131,14 @@ class KMKKeyboard:
microcontroller.reset()
while self.uart.in_waiting >= 3:
self.uart_buffer.append(self.uart.read(3))
while self._uart.in_waiting >= 3:
self.uart_buffer.append(self._uart.read(3))
if self.uart_buffer:
update = bytearray(self.uart_buffer.pop(0))
# Built in debug mode switch
if update == b'DEB':
print(self.uart.readline())
print(self._uart.readline())
return None
return update
@@ -163,26 +150,207 @@ class KMKKeyboard:
be detected and handled differently than typical keypresses.
:param message: Debug message
'''
if self.uart is not None:
self.uart.write('DEB')
self.uart.write(message, '\n')
if self._uart is not None:
self._uart.write('DEB')
self._uart.write(message, '\n')
def init_uart(self, pin, timeout=20):
if self.is_target:
return busio.UART(tx=None, rx=pin, timeout=timeout)
#####
# SPLICE: INTERNAL STATE
# FIXME CLEAN THIS
#####
def _find_key_in_map(self, row, col):
ic = intify_coordinate(row, col)
try:
idx = self.coord_mapping.index(ic)
except ValueError:
if self.debug_enabled:
print(
'CoordMappingNotFound(ic={}, row={}, col={})'.format(ic, row, col)
)
return None
for layer in self._active_layers:
layer_key = self.keymap[layer][idx]
if not layer_key or layer_key == KC.TRNS:
continue
if self.debug_enabled:
print('KeyResolution(key={})'.format(layer_key))
return layer_key
def _on_matrix_changed(self, row, col, is_pressed):
if self.debug_enabled:
print('MatrixChange(col={} row={} pressed={})'.format(col, row, is_pressed))
int_coord = intify_coordinate(row, col)
kc_changed = self._find_key_in_map(row, col)
if kc_changed is None:
print('MatrixUndefinedCoordinate(col={} row={})'.format(col, row))
return self
return self._process_key(kc_changed, is_pressed, int_coord, (row, col))
def _process_key(self, key, is_pressed, coord_int=None, coord_raw=None):
if self._tapping and not isinstance(key.meta, TapDanceKeyMeta):
self._process_tap_dance(key, is_pressed)
else:
return busio.UART(tx=pin, rx=None, timeout=timeout)
if is_pressed:
key._on_press(self, coord_int, coord_raw)
else:
key._on_release(self, coord_int, coord_raw)
def go(self, hid_type=HIDModes.USB, **kwargs):
return self
def _remove_key(self, keycode):
self._keys_pressed.discard(keycode)
return self._process_key(keycode, False)
def _add_key(self, keycode):
self._keys_pressed.add(keycode)
return self._process_key(keycode, True)
def _tap_key(self, keycode):
self._add_key(keycode)
# On the next cycle, we'll remove the key.
self._set_timeout(False, lambda: self._remove_key(keycode))
return self
def _process_tap_dance(self, changed_key, is_pressed):
if is_pressed:
if not isinstance(changed_key.meta, TapDanceKeyMeta):
# If we get here, changed_key is not a TapDanceKey and thus
# the user kept typing elsewhere (presumably). End ALL of the
# currently outstanding tap dance runs.
for k, v in self._tap_dance_counts.items():
if v:
self._end_tap_dance(k)
return self
if (
changed_key not in self._tap_dance_counts
or not self._tap_dance_counts[changed_key]
):
self._tap_dance_counts[changed_key] = 1
self._set_timeout(
self.tap_time, lambda: self._end_tap_dance(changed_key)
)
self._tapping = True
else:
self._tap_dance_counts[changed_key] += 1
if changed_key not in self._tap_side_effects:
self._tap_side_effects[changed_key] = None
else:
has_side_effects = self._tap_side_effects[changed_key] is not None
hit_max_defined_taps = self._tap_dance_counts[changed_key] == len(
changed_key.codes
)
if has_side_effects or hit_max_defined_taps:
self._end_tap_dance(changed_key)
return self
def _end_tap_dance(self, td_key):
v = self._tap_dance_counts[td_key] - 1
if v >= 0:
if td_key in self._keys_pressed:
key_to_press = td_key.codes[v]
self._add_key(key_to_press)
self._tap_side_effects[td_key] = key_to_press
self._hid_pending = True
else:
if self._tap_side_effects[td_key]:
self._remove_key(self._tap_side_effects[td_key])
self._tap_side_effects[td_key] = None
self._hid_pending = True
self._cleanup_tap_dance(td_key)
else:
self._tap_key(td_key.codes[v])
self._cleanup_tap_dance(td_key)
return self
def _cleanup_tap_dance(self, td_key):
self._tap_dance_counts[td_key] = 0
self._tapping = any(count > 0 for count in self._tap_dance_counts.values())
return self
def _set_timeout(self, after_ticks, callback):
if after_ticks is False:
# We allow passing False as an implicit "run this on the next process timeouts cycle"
timeout_key = ticks_ms()
else:
timeout_key = ticks_ms() + after_ticks
while timeout_key in self._timeouts:
timeout_key += 1
self._timeouts[timeout_key] = callback
return timeout_key
def _cancel_timeout(self, timeout_key):
if timeout_key in self._timeouts:
del self._timeouts[timeout_key]
def _process_timeouts(self):
if not self._timeouts:
return self
current_time = ticks_ms()
# cast this to a tuple to ensure that if a callback itself sets
# timeouts, we do not handle them on the current cycle
timeouts = tuple(self._timeouts.items())
for k, v in timeouts:
if k <= current_time:
v()
del self._timeouts[k]
return self
#####
# SPLICE END: INTERNAL STATE
# TODO FIXME REMOVE THIS
#####
def _init_sanity_check(self):
'''
Ensure the provided configuration is *probably* bootable
'''
assert self.keymap, 'must define a keymap with at least one row'
assert self.row_pins, 'no GPIO pins defined for matrix rows'
assert self.col_pins, 'no GPIO pins defined for matrix columns'
assert self.diode_orientation is not None, 'diode orientation must be defined'
assert (
hid_type in HIDModes.ALL_MODES
self.hid_type in HIDModes.ALL_MODES
), 'hid_type must be a value from kmk.consts.HIDModes'
# Attempt to sanely guess a coord_mapping if one is not provided
return self
def _init_coord_mapping(self):
'''
Attempt to sanely guess a coord_mapping if one is not provided. No-op
if `kmk.extensions.split.Split` is used, it provides equivalent
functionality in `on_bootup`
To save RAM on boards that don't use Split, we don't import Split
and do an isinstance check, but instead do string detection
'''
if any(
x.__class__.__module__ == 'kmk.extensions.split' for x in self._extensions
):
return
if not self.coord_mapping:
self.coord_mapping = []
@@ -190,19 +358,14 @@ class KMKKeyboard:
rows_to_calc = len(self.row_pins)
cols_to_calc = len(self.col_pins)
if self.split_offsets:
rows_to_calc *= 2
cols_to_calc *= 2
for ridx in range(rows_to_calc):
for cidx in range(cols_to_calc):
self.coord_mapping.append(ic(ridx, cidx))
self.coord_mapping.append(intify_coordinate(ridx, cidx))
self._state = InternalState(self)
if hid_type == HIDModes.NOOP:
def _init_hid(self):
if self.hid_type == HIDModes.NOOP:
self.hid_helper = AbstractHID
elif hid_type == HIDModes.USB:
elif self.hid_type == HIDModes.USB:
try:
from kmk.hid import USBHID
@@ -210,7 +373,7 @@ class KMKKeyboard:
except ImportError:
self.hid_helper = AbstractHID
print('USB HID is unsupported ')
elif hid_type == HIDModes.BLE:
elif self.hid_type == HIDModes.BLE:
try:
from kmk.ble import BLEHID
@@ -221,92 +384,87 @@ class KMKKeyboard:
self._hid_helper_inst = self.hid_helper(**kwargs)
# Split keyboard Init
if self.split_type is not None:
try:
# Working around https://github.com/adafruit/circuitpython/issues/1769
self._hid_helper_inst.create_report([]).send()
self.is_target = True
# Sleep 2s so target portion doesn't "appear" to boot quicker than
# dependent portions (which will take ~2s to time out on the HID send)
sleep_ms(2000)
except OSError:
self.is_target = False
if self.split_flip and not self.is_target:
self.col_pins = list(reversed(self.col_pins))
if self.target_side == 'Left':
self.split_target_left = self.is_target
elif self.target_side == 'Right':
self.split_target_left = not self.is_target
else:
self.is_target = True
if self.uart_pin is not None:
self.uart = self.init_uart(self.uart_pin)
if self.rgb_pixel_pin:
self.pixels = rgb.RGB(self.rgb_config, self.rgb_pixel_pin)
self.rgb_config = None # No longer needed
self.pixels.loopcounter = 0
else:
self.pixels = None
if self.led_pin:
self.led = led.led(self.led_pin, self.led_config)
self.led_config = None # No longer needed
else:
self.led = None
self.matrix = self.matrix_scanner(
def _init_matrix(self):
self.matrix = MatrixScanner(
cols=self.col_pins,
rows=self.row_pins,
diode_orientation=self.diode_orientation,
rollover_cols_every_rows=getattr(self, 'rollover_cols_every_rows', None),
)
# Compile string leader sequences
for k, v in self.leader_dictionary.items():
if not isinstance(k, tuple):
new_key = tuple(KC[c] for c in k)
self.leader_dictionary[new_key] = v
return self
for k, v in self.leader_dictionary.items():
if not isinstance(k, tuple):
del self.leader_dictionary[k]
def go(self, hid_type=HIDModes.USB, **kwargs):
self._extensions = [] + getattr(self, 'extensions', [])
try:
del self.extensions
except Exception:
pass
finally:
gc.collect()
self.hid_type = hid_type
self._init_sanity_check()
self._init_coord_mapping()
self._init_hid()
for ext in self._extensions:
try:
ext.during_bootup(self)
except Exception:
# TODO FIXME log the exceptions or something
pass
self._init_matrix()
self._print_debug_cycle(init=True)
while True:
if self.split_type is not None and self.is_target:
update = self._receive_from_initiator()
if update is not None:
self._handle_matrix_report(update)
self.state_changed = False
update = self.matrix.scan_for_changes()
for ext in self._extensions:
try:
self._handle_matrix_report(ext.before_matrix_scan(self))
except Exception as e:
print(e)
if update is not None:
if self.is_target:
self._handle_matrix_report(update)
else:
# This keyboard is a initiator, and needs to send data to target
self._send_to_target(update)
matrix_update = self.matrix.scan_for_changes()
self._handle_matrix_report(matrix_update)
if self._state.hid_pending:
for ext in self._extensions:
try:
ext.after_matrix_scan(self, matrix_update)
except Exception as e:
print(e)
for ext in self._extensions:
try:
ext.before_hid_send(self)
except Exception:
# TODO FIXME log the exceptions or something
pass
if self._hid_pending:
self._send_hid()
old_timeouts_len = len(self._state.timeouts)
self._state.process_timeouts()
new_timeouts_len = len(self._state.timeouts)
old_timeouts_len = len(self._timeouts)
self._process_timeouts()
new_timeouts_len = len(self._timeouts)
if old_timeouts_len != new_timeouts_len:
if self._state.hid_pending:
self.state_changed = True
if self._hid_pending:
self._send_hid()
if self.pixels and self.pixels.animation_mode:
self.pixels.loopcounter += 1
if self.pixels.loopcounter >= 30:
self.pixels = self.pixels.animate()
self.pixels.loopcounter = 0
for ext in self._extensions:
try:
ext.after_hid_send(self)
except Exception:
# TODO FIXME log the exceptions or something
pass
if self.led and self.led.enabled and self.led.animation_mode:
self.led = self.led.animate()
if self.state_changed:
self._print_debug_cycle()

View File

@@ -1,88 +1,105 @@
import pulseio
from micropython import const
import time
from math import e, exp, pi, sin
led_config = {
'brightness_step': 5,
'brightness_limit': 100,
'breathe_center': 1.5,
'animation_mode': 'static',
'animation_speed': 1,
}
from kmk.extensions import Extension, InvalidExtensionEnvironment
from kmk.keys import make_key
class led:
brightness = 0
time = int(time.monotonic() * 1000)
pos = 0
effect_init = False
class AnimationModes:
OFF = 0
STATIC = 1
STATIC_STANDBY = 2
BREATHING = 3
USER = 4
led = None
brightness_step = 5
brightness_limit = 100
breathe_center = 1.5
animation_mode = 'static'
animation_speed = 1
enabled = True
user_animation = None
def __init__(self, led_pin, config):
self.led = pulseio.PWMOut(led_pin)
self.brightness_step = const(config['brightness_step'])
self.brightness_limit = const(config['brightness_limit'])
self.animation_mode = const(config['animation_mode'])
self.animation_speed = const(config['animation_speed'])
self.breathe_center = const(config['breathe_center'])
if config.get('user_animation'):
self.user_animation = config['user_animation']
class LED(Extension):
def __init__(
self,
led_pin,
brightness_step=5,
brightness_limit=100,
breathe_center=1.5,
animation_mode=AnimationModes.STATIC,
animation_speed=1,
user_animation=None,
):
try:
self._led = pulseio.PWMOut(led_pin)
except Exception as e:
print(e)
raise InvalidExtensionEnvironment(
'Unable to create pulseio.PWMOut() instance with provided led_pin'
)
self._brightness = 0
self._pos = 0
self._effect_init = False
self.brightness_step = brightness_step
self.brightness_limit = brightness_limit
self.animation_mode = animation_mode
self.animation_speed = animation_speed
self.breathe_center = breathe_center
if user_animation is not None:
self.user_animation = user_animation
make_key(names=('LED_TOG',), on_press=self._key_led_tog)
make_key(names=('LED_INC',), on_press=self._key_led_inc)
make_key(names=('LED_DEC',), on_press=self._key_led_dec)
make_key(names=('LED_ANI',), on_press=self._key_led_ani)
make_key(names=('LED_AND',), on_press=self._key_led_and)
make_key(
names=('LED_MODE_PLAIN', 'LED_M_P'), on_press=self._key_led_mode_static
)
make_key(
names=('LED_MODE_BREATHE', 'LED_M_B'), on_press=self._key_led_mode_breathe
)
def __repr__(self):
return 'LED({})'.format(self._to_dict())
def _to_dict(self):
return {
'led': self.led,
'brightness_step': self.brightness_step,
'brightness_limit': self.brightness_limit,
'animation_mode': self.animation_mode,
'animation_speed': self.animation_speed,
'breathe_center': self.breathe_center,
}
# TODO FIXME remove
pass
def _init_effect(self):
self.pos = 0
self.effect_init = False
self._pos = 0
self._effect_init = False
return self
def time_ms(self):
return int(time.monotonic() * 1000)
def after_hid_send(self, keyboard):
if self._enabled and self.animation_mode:
self.animate()
return keyboard
def set_brightness(self, percent):
self.led.duty_cycle = int(percent / 100 * 65535)
self._led.duty_cycle = int(percent / 100 * 65535)
def increase_brightness(self, step=None):
if not step:
self.brightness += self.brightness_step
self._brightness += self.brightness_step
else:
self.brightness += step
self._brightness += step
if self.brightness > 100:
self.brightness = 100
if self._brightness > 100:
self._brightness = 100
self.set_brightness(self.brightness)
self.set_brightness(self._brightness)
def decrease_brightness(self, step=None):
if not step:
self.brightness -= self.brightness_step
self._brightness -= self.brightness_step
else:
self.brightness -= step
self._brightness -= step
if self.brightness < 0:
self.brightness = 0
if self._brightness < 0:
self._brightness = 0
self.set_brightness(self.brightness)
self.set_brightness(self._brightness)
def off(self):
self.set_brightness(0)
@@ -110,18 +127,18 @@ class led:
def effect_breathing(self):
# http://sean.voisen.org/blog/2011/10/breathing-led-with-arduino/
# https://github.com/qmk/qmk_firmware/blob/9f1d781fcb7129a07e671a46461e501e3f1ae59d/quantum/rgblight.c#L806
sined = sin((self.pos / 255.0) * pi)
sined = sin((self._pos / 255.0) * pi)
multip_1 = exp(sined) - self.breathe_center / e
multip_2 = self.brightness_limit / (e - 1 / e)
self.brightness = int(multip_1 * multip_2)
self.pos = (self.pos + self.animation_speed) % 256
self.set_brightness(self.brightness)
self._brightness = int(multip_1 * multip_2)
self._pos = (self._pos + self.animation_speed) % 256
self.set_brightness(self._brightness)
return self
def effect_static(self):
self.set_brightness(self.brightness)
self.set_brightness(self._brightness)
# Set animation mode to none to prevent cycles from being wasted
self.animation_mode = None
return self
@@ -131,16 +148,49 @@ class led:
Activates a "step" in the animation based on the active mode
:return: Returns the new state in animation
'''
if self.effect_init:
if self._effect_init:
self._init_effect()
if self.enabled:
if self.animation_mode == 'breathing':
if self._enabled:
if self.animation_mode == AnimationModes.BREATHING:
return self.effect_breathing()
elif self.animation_mode == 'static':
elif self.animation_mode == AnimationModes.STATIC:
return self.effect_static()
elif self.animation_mode == 'user':
elif self.animation_mode == AnimationModes.USER:
return self.user_animation(self)
else:
self.off()
return self
def _key_led_tog(self, key, state, *args, **kwargs):
if self.animation_mode == AnimationModes.STATIC_STANDBY:
self.animation_mode = AnimationModes.STATIC
self._enabled = not self._enabled
return state
def _key_led_inc(self, key, state, *args, **kwargs):
self.increase_brightness()
return state
def _key_led_dec(self, key, state, *args, **kwargs):
self.decrease_brightness()
return state
def _key_led_ani(self, key, state, *args, **kwargs):
self.increase_ani()
return state
def _key_led_and(self, key, state, *args, **kwargs):
self.decrease_ani()
return state
def _key_led_mode_static(self, key, state, *args, **kwargs):
self._effect_init = True
self.animation_mode = AnimationModes.STATIC
return state
def _key_led_mode_breathe(self, key, state, *args, **kwargs):
self._effect_init = True
self.animation_mode = AnimationModes.BREATHING
return state

View File

@@ -27,19 +27,11 @@ import kmk.consts # isort:skip
import kmk.kmktime # isort:skip
import kmk.types # isort:skip
from kmk.consts import LeaderMode, UnicodeMode, KMK_RELEASE # isort:skip
from kmk.hid import USBHID # isort:skip
from kmk.internal_state import InternalState # isort:skip
from kmk.keys import KC # isort:skip
from kmk.matrix import MatrixScanner # isort:skip
# Now handlers that will be used in keys later
import kmk.handlers.layers # isort:skip
import kmk.handlers.stock # isort:skip
# Now stuff that depends on the above (and so on)
import kmk.hid # isort:skip
import kmk.keys # isort:skip
import kmk.matrix # isort:skip
import kmk.hid # isort:skip
import kmk.internal_state # isort:skip

View File

@@ -1,99 +1,84 @@
from micropython import const
import neopixel
import time
from math import e, exp, pi, sin
rgb_config = {
'pixels': None,
'num_pixels': 0,
'pixel_pin': None,
'val_limit': 255,
'hue_default': 0,
'sat_default': 100,
'rgb_order': (1, 0, 2), # GRB WS2812
'val_default': 100,
'hue_step': 1,
'sat_step': 1,
'val_step': 1,
'animation_speed': 1,
'breathe_center': 1.5, # 1.0-2.7
'knight_effect_length': 3,
'animation_mode': 'static',
}
from kmk.extensions import Extension
rgb_config = {}
class RGB:
hue = 0
sat = 100
val = 80
class AnimationModes:
OFF = 0
STATIC = 1
STATIC_STANDBY = 2
BREATHING = 3
USER = 4
class RGB(Extension):
pos = 0
time = int(time.monotonic() * 10)
intervals = (30, 20, 10, 5)
animation_speed = 1
enabled = True
neopixel = None
rgbw = False
reverse_animation = False
disable_auto_write = False
animation_mode = 'static'
# Set by config
num_pixels = None
hue_step = None
sat_step = None
val_step = None
breathe_center = None # 1.0-2.7
knight_effect_length = None
val_limit = None
effect_init = False
user_animation = None
def __init__(
self,
pixel_pin,
num_pixels=0,
val_limit=255,
hue_default=0,
sat_default=100,
rgb_order=(1, 0, 2), # GRB WS2812
val_default=100,
hue_step=1,
sat_step=1,
val_step=1,
animation_speed=1,
breathe_center=1.5, # 1.0-2.7
knight_effect_length=3,
animation_mode=AnimationModes.STATIC,
effect_init=False,
reverse_animation=False,
user_animation=None,
disable_auto_write=False,
):
self.neopixel = neopixel.NeoPixel(
pixel_pin,
num_pixels,
pixel_order=rgb_order,
auto_write=not disable_auto_write,
)
def __init__(self, config, pixel_pin):
try:
import neopixel
if len(rgb_order) == 4:
self.rgbw = True
self.neopixel = neopixel.NeoPixel(
pixel_pin,
config['num_pixels'],
pixel_order=config['rgb_order'],
auto_write=False,
)
if len(config['rgb_order']) == 4:
self.rgbw = True
self.num_pixels = const(config['num_pixels'])
self.hue_step = const(config['hue_step'])
self.sat_step = const(config['sat_step'])
self.val_step = const(config['val_step'])
self.hue = const(config['hue_default'])
self.sat = const(config['sat_default'])
self.val = const(config['val_default'])
self.breathe_center = const(config['breathe_center'])
self.knight_effect_length = const(config['knight_effect_length'])
self.val_limit = const(config['val_limit'])
self.animation_mode = config['animation_mode']
self.animation_speed = const(config['animation_speed'])
if 'user_animation' in config:
self.user_animation = config['user_animation']
self.num_pixels = num_pixels
self.hue_step = hue_step
self.sat_step = sat_step
self.val_step = val_step
self.hue = hue_default
self.sat = sat_default
self.val = val_default
self.breathe_center = breathe_center
self.knight_effect_length = knight_effect_length
self.val_limit = val_limit
self.animation_mode = animation_mode
self.animation_speed = animation_speed
self.reverse_animation = reverse_animation
self.user_animation = user_animation
self.disable_auto_write = disable_auto_write
except ImportError as e:
print(e)
def during_bootup(self, keyboard):
pass
def __repr__(self):
return 'RGB({})'.format(self._to_dict())
def after_hid_send(self, keyboard):
if self.animation_mode:
self.loopcounter += 1
if self.loopcounter >= 7:
self.animate()
self.loopcounter = 0
def _to_dict(self):
return {
'hue': self.hue,
'sat': self.sat,
'val': self.val,
'time': self.time,
'intervals': self.intervals,
'animation_mode': self.animation_mode,
'animation_speed': self.animation_speed,
'enabled': self.enabled,
'neopixel': self.neopixel,
'disable_auto_write': self.disable_auto_write,
}
return keyboard
def time_ms(self):
return int(time.monotonic() * 1000)